K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC có 

AE là đường phân giác góc ngoài ứng với cạnh BC(gt)

nên \(\dfrac{EB}{EC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{EB}{EC}=\dfrac{16}{32}=\dfrac{1}{2}\)

\(\Leftrightarrow EB=\dfrac{1}{2}\cdot EC\)

mà E,B,C thẳng hàng

nên B là trung điểm của EC(đpcm)

 

Khi xét ΔABC có

AE là đường phân giác góc ngoài ứng với cạnh BC(gt)

nên:\(\dfrac{EB}{EC}\)=\(\dfrac{AB}{AC}\)(Ta có tính chất đường phân giác của hình tam giác)

\(\dfrac{EB}{EC}=\dfrac{16}{32}=\dfrac{1}{2}\)

\(EB=\dfrac{1}{2}.EC\)

Nhưng  \(E,B,C\) thẳng hàng

⇒ \(B\) là trung điểm của \(EC\)(đpcm)

a) Xét ΔABC có 

AE là đường phân giác góc ngoài tại đỉnh A(gt)

nên \(\dfrac{EB}{EC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác góc ngoài của tam giác)

\(\Leftrightarrow\dfrac{EB}{EC}=\dfrac{16}{32}=\dfrac{1}{2}\)

\(\Leftrightarrow EB=\dfrac{EC}{2}\)

mà E,B,C thẳng hàng(gt)

nên B là trung điểm của EC(đpcm)

b) Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)

\(\dfrac{BD}{16}=\dfrac{CD}{32}\)

mà BD+CD=BC(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{16}=\dfrac{CD}{32}=\dfrac{BD+CD}{16+32}=\dfrac{BC}{48}=\dfrac{21}{48}=\dfrac{7}{16}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BD}{16}=\dfrac{7}{16}\\\dfrac{CD}{32}=\dfrac{7}{16}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=7\left(cm\right)\\CD=14\left(cm\right)\end{matrix}\right.\)

Ta có: EB=BC(B là trung điểm của EC)

mà BC=21cm(gt)

nên EB=21cm

Ta có: EB+BD=ED(B nằm giữa E và D)

nên ED=21+7

hay ED=28(cm)

Vậy: DE=28cm

25 tháng 3 2022

thức khuya dậy sớm.... cô khen :)

11 tháng 4 2020

Câu hỏi của đoàn kiều oanh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé!

20 tháng 3 2021

anh đây đẹp troai, chim dài mét hai !

2 tháng 4 2021

con ciu 5cm im đi

13 tháng 4 2021

undefined

Câu 1: 

a: Xét ΔAHB vuông tạiH có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)

\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)

 

Y
4 tháng 2 2019

A C D E B

a) Xét ΔABC có AE là đường phân giác ta có :

\(\dfrac{EB}{EC}=\dfrac{AB}{AC}=\dfrac{1}{2}\)

=> B là trung điểm của EC

=> BE = BC = 21 (cm )

b) + Xét ΔABC , AD là đường phân giác ta có :

\(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{1}{2}\) \(\Rightarrow\dfrac{BD}{BC}=\dfrac{1}{3}\)

=> BD = 7 ( cm )

Do đó : DE = BE + BD = 28 ( cm )