cho tam giác ABC, D là trung điểm của AB từ D kẻ DE // BC ( E thuộc AC ) từ E kẻ EF//AB ( F thuộc BC ) chứng minh a) AD=EF b) tam giác ADE=tam giác EFC c) AE=EC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Hoàng Trang - Toán lớp 7 - Học toán với OnlineMath
a) Nối D và F ta có :
Xét tam giác BDF và tam giác FDE ta có :
DF là cạnh chung
Góc BDF = góc DFE ( vì AB // EF )
GócDFB = góc FDE ( vì DE // BC )
=>tam giác BDF = tam giác FDE(g.c.g)
=>DB = EF ( hai cạnh tương ứng )
Mà AD = DB => AD = EF.
b) Xét tam giác ADE và tam giác EFC ta có:
Góc A = góc FEC ( vì AB // EF )
AD = EF (theo câu a)
Góc ADE = góc EFC ( cùng bằng góc B)
=>tam giác ADE = tam giác EFC(g.c.g)
c) Theo câu b ta có:tam giác ADE = tam giác EFC
=> AE = EC ( hai cạnh tương ứng)
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
=>ΔADE\(\sim\)ΔABC
b: Xét tứ giác BDEF có
BD//EF
DE//BF
Do đó: BDEF là hình bình hành
a, Ta có:
ADAB=412=13;AEAC=515=13⇒ADAB=AEAC⇒ADAB=412=13;AEAC=515=13⇒ADAB=AEAC⇒Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.⇒⇒ DE//AE
Xét tam giác ADE và ABC có:
ADAB=AEACADAB=AEAC
ˆDAE=ˆBACDAE^=BAC^
⇒⇒ Tam giác ADF đồng dạng với tam giác ABC
Đọc tiếp
a)Nối D với F. Xét \(\Delta BDF\) và \(\Delta FDE\) ta có:
\(\widehat{BDF}=\widehat{DFE}\) (so le trong (Vì AB//EF (gt)))
DF cạnh chung
\(\widehat{DFB}=\widehat{FDE}\) (so le trong (Vì DE//BC (gt)))
\(\Rightarrow\Delta BDF\)\(=\Delta FDE\) (g.c.g)
\(\Rightarrow DB=EF\) (2 cạnh tương ứng )
Mà \(DB=DA\) (D là trung điểm AB)
Suy ra AD=EF
b)Xét \(\Delta ADE\) và \(\Delta EFC\:\) ta có:
\(\widehat{ADE}=\widehat{CFE}\) (\(=\widehat{BAC}\); đồng vị của DE//BC và EF//AB)
\(AD=EF\) (cmt)
\(\widehat{DAE}=\widehat{FEC}\) (đồng vị của DE//BC)
\(\Rightarrow\Delta ADE=\Delta EFC\) (g.c.g)
c)Vì \(\Delta ADE=\Delta EFC\) (cmt)
Suy ra \(AE=EC\) (2 cạnh tương ứng )
a: XétΔABC có
AD/AB=AE/AC
Do đó: DE//BC
hay ΔADE\(\sim\)ΔABC
b: Xét tứ giác BDEF có
EF//BD
DE//BF
Do đó: BDEF là hình bình hành
*Tự vẽ hình
a) Có : DE//BC(GT)
EF//AB(GT)
=> BDEF là hình bình hành
=> BD=EF
Mà : AD=DB(GT)
=> AD=EF (đccm)
b) Ta có : AD=DB(GT)
DE//BC (GT)
=> DE là đường trung bình của tam giác ABC
=> AE=EC
Có : AE=EC(cmt)
EF//AB(GT)
=> EF là đường trung bình của tam giác ABC
=> BF=FC
Mà : BF=DE(BDEF-hình bình hành)
=> FC=DE
Xét tam giác ADE và EFC có :
AE=EC(cmt)
AD=EF(cm ý a)
DE=FC(cmt)
=> Tam giác ADE=EFC(c.c.c)
c) Đã chứng minh ở ý b
*Cách khác:
Giải:
Hình bạn tự vẽ nhé.
a) Ta có: BD // EF (vì AB /// EF)
=> Góc BDF = góc DFE (2 góc so le trong)
Vì DE // BC (gt)
nên góc EDF = góc BFD (2 góc so le trong)
Xét tam giác EDF và tam giác BDF có:
Góc BDF = góc DFE (chứng minh trên)
DF là cạnh chung
Góc EDF = góc BFD (chứng minh trên)
=> Tam giác DEF = tam giác FBD (g.c.g)
=> BD = EF ( 2 cạnh tương ứng) (đpcm)
Mà BD = AD (vì D là trung điểm của AB)
=> AD = EF (đpcm)
b) Ta có: AB // EF (gt)
=> Góc A = góc CEF (2 góc đồng vị)
Lại có: tam giác DEF = tam giác FBD (chứng minh trên)
=> Góc DEF = góc B (2 góc tương ứng) (1)
Mà DE // BC (gt)
=> Góc DEF = góc CFE (2 góc so le trong) (2)
Góc ADE = góc B (2 góc đồng vị)
Từ (1), (2) => Góc B = góc CFE
Mà góc B = góc ADE (chứng minh trên)
=> Góc ADE = góc CFE
Xét tam giác ADE và tam giác CEF có:
Góc CEF = góc A (chứng minh trên)
AD = EF (chứng minh trên)
Góc ADE = góc CFE (chứng minh trên)
=> Tam giác ADE = tam giác EFC (g.c.g) (đpcm)
c) Ta có: tam giác ADE = tam giác EFC (chứng minh trên)
=> AE = CE (2 cạnh tương ứng) (đpcm)