cho dãy số (un) được xác định bởi : \(\left\{{}\begin{matrix}u_1=0;u_2=1\\2u_{n+2}=u_{n+1}+u_n,\left(n\ge1\right)\end{matrix}\right.\)
a) Chứng minh rằng:un+1= -1/2 un+1, \(\forall n\ge1\)
b) đặt vn=un-2/3. Tính vn theo n từ đó tìm lim un
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(n>1\):
\(n\left(n^2-1\right)u_n=u_1+2u_2+...+\left(n-1\right)u_{n-1}\) (1)
\(\Leftrightarrow n^3-n.u_n=u_1+2u_2+...+\left(n-1\right)u_{n-1}\)
\(\Leftrightarrow n^3.u_n=u_1+2u_2+...+\left(n-1\right)u_{n-1}+n.u_n\) (2)
Thay n bởi \(n-1\) vào (2):
\(\Rightarrow\left(n-1\right)^3u_{n-1}=u_1+2u_2+...+\left(n-1\right)u_{n-1}\) (3)
Từ (1) và (3):
\(\Rightarrow n\left(n^2-1\right)u_n=\left(n-1\right)^2u_{n-1}\)
\(\Leftrightarrow n\left(n+1\right)u_n=\left(n-1\right)^2u_{n-1}\)
\(\Rightarrow u_n=\dfrac{\left(n-1\right)^2}{\left(n+1\right)n}u_{n-1}=\dfrac{\left(n-1\right)^2}{\left(n+1\right)n}.\dfrac{\left(n-2\right)^2}{n\left(n-1\right)}u_{n-2}=...=\dfrac{\left(n-1\right)^2\left(n-2\right)^2....1^2}{\left(n+1\right)n.n\left(n-1\right)...3.2}u_1\)
\(\Rightarrow u_n=\dfrac{\left[\left(n-1\right)!\right]^2}{\dfrac{\left(n+1\right).n^2\left[\left(n-1\right)!\right]^2}{2}}u_1=\dfrac{4}{n^2\left(n+1\right)}\)
Công thức này chỉ đúng với \(n\ge2\)
Đề không cho sẵn dãy tăng à? Vậy phải chứng minh nó tăng trước
\(u_{n+1}=\dfrac{u_n^2+2018u_n+1}{2020}\)
\(u_{n+1}-u_n=\dfrac{u_n^2+2018u_n+1}{2020}-u_n=\dfrac{\left(u_n-1\right)^2}{2020}\ge0\) \(\Rightarrow\) dãy tăng và không bị chặn trên \(\Rightarrow lim\left(u_n\right)=+\infty\)
\(\Rightarrow2020u_{n+1}=u_n^2+2018u_n+1\)
\(\Leftrightarrow2020u_{n+1}-2020=u_n^2+2018u_n-2019\)
\(\Leftrightarrow2020\left(u_{n+1}-1\right)=\left(u_n+2019\right)\left(u_n-1\right)\)
\(\Rightarrow\dfrac{1}{2020\left(u_{n+1}-1\right)}=\dfrac{1}{\left(u_n+2019\right)\left(u_n-1\right)}=\dfrac{1}{2020}\left(\dfrac{1}{u_n-1}-\dfrac{1}{u_n+2019}\right)\)
\(\Rightarrow\dfrac{1}{u_n+2019}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)
Thế n=1;2;...;n ta được:
\(\dfrac{1}{u_1+2019}=\dfrac{1}{u_1-1}-\dfrac{1}{u_2-1}\)
\(\dfrac{1}{u_2+2019}=\dfrac{1}{u_2-1}-\dfrac{1}{u_3-1}\)
...
\(\dfrac{1}{u_n+2019}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)
Cộng vế: \(S_n=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}=\dfrac{1}{2018}-\dfrac{1}{u_{n+1}-1}\)
\(\Rightarrow\lim\left(S_n\right)=\dfrac{1}{2018}-\dfrac{1}{\infty}=\dfrac{1}{2018}\)
\(u_2=\sqrt{2}\left(2+3\right)-3=5\sqrt{2}-3\)
\(u_3=\sqrt{\dfrac{3}{2}}.5\sqrt{2}-3=5\sqrt{3}-3\)
\(u_4=\sqrt{\dfrac{4}{3}}.5\sqrt{3}-3=5\sqrt{4}-3\)
....
\(\Rightarrow u_n=5\sqrt{n}-3\)
\(\Rightarrow\lim\limits\dfrac{u_n}{\sqrt{n}}=\lim\limits\dfrac{5\sqrt{n}-3}{\sqrt{n}}=5\)
\(u_{n+1}=\dfrac{u_n}{u_n+1}\Rightarrow\dfrac{1}{u_{n+1}}=\dfrac{1}{u_n}+1\)
Đặt \(\dfrac{1}{u_n}=v_n\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{1}{u_1}=1\\v_{n+1}=v_n+1\end{matrix}\right.\)
\(\Rightarrow v_n\) là CSC với công sai \(d=1\Rightarrow v_n=v_1+\left(n-1\right).1=n\)
\(\Rightarrow u_n=\dfrac{1}{n}\)
\(\Rightarrow u_n+1=\dfrac{n+1}{n}\)
\(\lim\dfrac{2014\left(\dfrac{2}{1}\right)\left(\dfrac{3}{2}\right)\left(\dfrac{4}{3}\right)...\left(\dfrac{n+1}{n}\right)}{2015n}=\lim\dfrac{2014\left(n+1\right)}{2015n}=\dfrac{2014}{2015}\)
https://hoc24.vn/cau-hoi/giai-phuong-trinhleft3-4sin2xrightleft3-4sin23xright1-2cos10x.4916575957961
Giúp mik bài này với ạ