K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
25 tháng 1 2021

A B D C E

do tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABD}=\widehat{ACE}\) mà AB=AC và BD =CE

nên tam giác ABD =ACE theo th c.g.c

b. từ câu a ta có AD=AE nên tam giác ADE cân tại A

6 tháng 6 2023

 a, Vì tam giác ABC cân tại A

=> AB=AC, gócABC=gócACB

=> gócABD=gócACE

   Xét tam giác ABD và tam giác ACE có

AB=AC, gócABD=gócACE, BD=CE

=> tam giác ABD = tam giác ACE (c-g-c)

=> gócCAE=gócBAD

 b, Xét tam giác AMC và tam giác AFB có

gócAMC=gócAFB=90o, AC=AB, gócCAE=gócBAD

=> tam giác AMC = tam giác AFB (cạnh huyền góc nhọn)

=> AM=AF

=> tam giác AMF cân tại A

a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(Hai góc ở đáy của ΔBAC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b) Xét ΔHBD vuông tại H và ΔKCE vuông tại K có 

BD=CE(gt)

\(\widehat{HDB}=\widehat{KEC}\)(ΔADB=ΔAEC)

Do đó: ΔHBD=ΔKCE(cạnh huyền-góc nhọn)

c) Ta có: ΔHBD=ΔKCE(cmt)

nên \(\widehat{HBD}=\widehat{KCE}\)(hai góc tương ứng)

mà \(\widehat{HBD}=\widehat{OBC}\)(hai góc đối đỉnh)

và \(\widehat{KCE}=\widehat{OCB}\)(hai góc đối đỉnh)

nên \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định nghĩa tam giác cân)

20 tháng 2 2021

Chúc học tốt

11 tháng 1 2022

a, Ta có : ΔABC có AB = AC

⇒ ΔABC là tam giác cân

⇒ ∠B  = ∠C = 180 - ∠A/2

Xét ΔADC và ΔAEB có :

DC = BE ( DB+BC = EC+CB )

∠ACD = ∠ABE ( chứng minh trên )

AC = AB

⇒ ΔADC = ΔAEB (c.g.c)

⇒ AD = AE ( 2 cạnh tương ứng )

b, Ta có : ∠ABD + ∠ABC = 180 ( 2 góc kề bù )

                ∠ACB + ∠ACE = 180 ( 2 góc kề bù )

Mà ∠ABC = ∠ACB

⇒ ∠ABD = ∠ACE

Xét ΔABD và ΔACE có :

AB = AD

∠ABD = ∠ACE

BD = CE

⇒ ΔABD = ΔACE (c.g.c)

Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE

hay ΔADE cân tại A

Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

Suy ra: AD=AE
hay ΔADE cân tại A

26 tháng 4 2021

tam giác ABC cân tại A-->góc ABC=góc ACB (đ/lí tam giác cân)

góc ACE+góc ACB=180 độ (kề bù)

góc ABD+góc ABC=180 độ (kề bù)

mà góc ABC=góc ACB (cmt)

-->góc ACE=góc ABD (bắc cầu)

xét tam giác ABD và tam giác ACE có:

+AB=AC(gt)

+BD=CE(gt)

+góc ABD=góc ACE(cmt)

vậy tam giác ABD=tam giác ACE(cgc)

suy ra AD=AE

AD=AE(cmt)-->tam giác ADE cân tại A

26 tháng 4 2021

thank you!Thanks for ticking me! I didn't expect I was right, I also think you will tick later like everyone else! I didn't expect you to tick early>))

a: Xét ΔABD và ΔACE có

AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
b: ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A

c: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

ΔADE cân tại A

mà AM vuông góc DE

nên AM là phân giác của góc DAE

d: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
góc BAH=góc CAK

=>ΔAHB=ΔAKC

=>AH=AK

=>ΔAHK cân tại A

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE
DO đó: ΔABD=ΔACE

Suy ra: AD=AE
hay ΔADE cân tại A

b: Xét ΔABH vuông tại H và ΔACK vuông tại K có 

AB=AC
\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔABH=ΔACK

Suy ra: BH=CK và AH=AK

Xét ΔADE có 

AH/AD=AK/AE

nên HK//DE
hay HK//BC

c: Xét ΔHBD vuông tại H và ΔKCE vuông tại K có 

BD=CE
\(\widehat{HBD}=\widehat{KCE}\)

Do đó: ΔHBD=ΔKCE
Suy ra: \(\widehat{HBD}=\widehat{KCE}\)

=>\(\widehat{OCB}=\widehat{OBC}\)

=>ΔOBC cân tại O

=>OB=OC

mà HB=CK

nên OB+HB=OC+CK

=>OH=OK

hay ΔOHK cân tại O