Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
1) \(\sqrt[]{3x+7}-5< 0\)
\(\Leftrightarrow\sqrt[]{3x+7}< 5\)
\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)
\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)
\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)
\(\left(x-1\right)^3-\left(x-1\right)\left(2x-3\right)\left(3x-5\right)+\left(2x-3\right)^3-\left(x-1\right)\left(2x-3\right)\left(3x-5\right)+\left(3x-5\right)^3-\left(x-1\right)\left(2x-3\right)\left(3x-5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\left(x-1\right)^2-\left(2x-3\right)\left(3x-5\right)\right)+\left(2x-3\right)\left(\left(2x-3\right)^2-\left(x-1\right)\left(3x-5\right)\right)+\left(3x-5\right)\left(\left(3x-5\right)^2-\left(x-1\right)\left(2x-3\right)\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(7-5x\right)+\left(2x-3\right)\left(x-2\right)^2+\left(3x-5\right)\left(x-2\right)\left(7x-11\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(\left(x-1\right)\left(7-5x\right)+\left(2x-3\right)\left(x-2\right)+\left(3x-5\right)\left(7x-11\right)\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(18x^2-63x+54\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\18x^2-63x+54=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Bài `1:`
`h)(3/4x-1)(5/3x+2)=0`
`=>[(3/4x-1=0),(5/3x+2=0):}=>[(x=4/3),(x=-6/5):}`
______________
Bài `2:`
`b)3x-15=2x(x-5)`
`<=>3(x-5)-2x(x-5)=0`
`<=>(x-5)(3-2x)=0<=>[(x=5),(x=3/2):}`
`d)x(x+6)-7x-42=0`
`<=>x(x+6)-7(x+6)=0`
`<=>(x+6)(x-7)=0<=>[(x=-6),(x=7):}`
`f)x^3-2x^2-(x-2)=0`
`<=>x^2(x-2)-(x-2)=0`
`<=>(x-2)(x^2-1)=0<=>[(x=2),(x^2=1<=>x=+-2):}`
`h)(3x-1)(6x+1)=(x+7)(3x-1)`
`<=>18x^2+3x-6x-1=3x^2-x+21x-7`
`<=>15x^2-23x+6=0<=>15x^2-5x-18x+6=0`
`<=>(3x-1)(5x-1)=0<=>[(x=1/3),(x=1/5):}`
`j)(2x-5)^2-(x+2)^2=0`
`<=>(2x-5-x-2)(2x-5+x+2)=0`
`<=>(x-7)(3x-3)=0<=>[(x=7),(x=1):}`
`w)x^2-x-12=0`
`<=>x^2-4x+3x-12=0`
`<=>(x-4)(x+3)=0<=>[(x=4),(x=-3):}`
`m)(1-x)(5x+3)=(3x-7)(x-1)`
`<=>(1-x)(5x+3)+(1-x)(3x-7)=0`
`<=>(1-x)(5x+3+3x-7)=0`
`<=>(1-x)(8x-4)=0<=>[(x=1),(x=1/2):}`
`p)(2x-1)^2-4=0`
`<=>(2x-1-2)(2x-1+2)=0`
`<=>(2x-3)(2x+1)=0<=>[(x=3/2),(x=-1/2):}`
`r)(2x-1)^2=49`
`<=>(2x-1-7)(2x-1+7)=0`
`<=>(2x-8)(2x+6)=0<=>[(x=4),(x=-3):}`
`t)(5x-3)^2-(4x-7)^2=0`
`<=>(5x-3-4x+7)(5x-3+4x-7)=0`
`<=>(x+4)(9x-10)=0<=>[(x=-4),(x=10/9):}`
`u)x^2-10x+16=0`
`<=>x^2-8x-2x+16=0`
`<=>(x-2)(x-8)=0<=>[(x=2),(x=8):}`
\(\Leftrightarrow\left(3x-5\right)^3-3\left(x-1\right)\left(2x-3\right)\left(3x-5\right)+\left(2x-3\right)^3+\left(x-1\right)^3=9\left(x-2\right)^2\left(2x-3\right)\)
\(\Rightarrow x^2-4x+4=0\)
\(\Rightarrow\left(-4\right)^2-4\left(1.4\right)=0\)(cái này là D )
\(\Rightarrow x_{1,2}=\frac{-b+-\sqrt{D}}{2a}=\frac{4+-\sqrt{0}}{2}\)
\(\Rightarrow2x-3=0\)
\(\Rightarrow2x=3\)
\(\Rightarrow x=\frac{3}{2}\)hoặc\(x=2\)
\(\left(2x-5\right)^3-\left(3x-4\right)^3+\left(x+1\right)^3=0\)
\(\Leftrightarrow\left(2x-5-3x+4\right)\left[\left(2x-5\right)^2+\left(2x-5\right)\left(3x-4\right)+\left(3x-4\right)^2\right]+\left(x+1\right)^3=0\)
\(\Leftrightarrow-\left(x+1\right)\left[\left(2x-5\right)^2+\left(2x-5\right)\left(3x-4\right)+\left(3x-4\right)^2\right]+\left(x+1\right)^3=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x+1\right)^2-\left(2x-5\right)^2-\left(2x-5\right)\left(3x-4\right)-\left(3x-4\right)^2=0\left(1\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow\left(x+1+2x-5\right)\left(x+1-2x+5\right)-\left(2x-5\right)\left(3x-4\right)-\left(3x-4\right)^2=0\)
\(\Leftrightarrow\left(3x-4\right)\left(6-x-2x+5-3x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-4=0\\-6x+15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{-5}{2}\end{cases}}}\)
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) đẻ được hỗ trợ tốt hơn. Viết như thế kia rất khó đọc => khả năng bị bỏ qua bài cao.
a: =>3x=3
=>x=1
b: =>12x-2(5x-1)=3(8-3x)
=>12x-10x+2=24-9x
=>2x+2=24-9x
=>11x=22
=>x=2
c: =>2x-3(2x+1)=x-6x
=>-5x=2x-6x-3=-4x-3
=>-x=-3
=>x=3
d: =>2x-5=0 hoặc x+3=0
=>x=5/2 hoặc x=-3
e: =>x+2=0
=>x=-2
pt <=>(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^1+x)+(x+1) =0
<=> (x+1).(x^4+x^3+2x^2+x+1)=0
<=>(x+1).[(x^4+x^3+x^2)+(x^2+x+1)] =0
<=>(x+1).(x^2+x+1).(x^2+1)=0
<=> x+1 = 0 ( vì x^2+x+1 và x^2+1 đều > 0)
<=> x= -1
Vậy pt có tập nghiệm x=-1
\(\left(2x-5\right)^3-\left(3x-4\right)^3+\left(x+1\right)^3=0\)
\(\Leftrightarrow8x^3-60x^2+150x-125-\left(27x^3-108x^2+144x-64\right)+x^3+3x^2+3x+1=0\)
\(\Leftrightarrow9x^3-57x^2+153x-124-27x^3+108x^2-144x+64=0\)
\(\Leftrightarrow-18x^3+51x^2+9x-60=0\)
\(\Leftrightarrow\left(3x-4\right)\left(2x-5\right)\left(x+1\right)=0\Leftrightarrow x=\frac{4}{3};\frac{5}{2};-1\)
\(\left(2x-5\right)^3-\left(3x-4\right)^3+\left(x+1\right)^3=0\)
\(\Leftrightarrow8x^3-60x^2+150x-125-27x^3+108x^2-144x+64+x^3+3x^2+3x+1=0\)
\(\Leftrightarrow-18x^3+51x^2+9x-60=0\)
\(\Leftrightarrow-3\left(x+1\right)\left(2x-5\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+1=0\\2x-5=0\\3x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\x=\frac{5}{2}\\x=\frac{4}{3}\end{cases}}}\)