\(\frac{x-a+1}{x-a}-\frac{x-b+1}{x-b}=\frac{a}{\left(x-a\right)\left(x-b\right)}\)
Giải và biện luận phương trình.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:\(\hept{\begin{cases}a,b\ne0\\x\ne b\\x\ne c\end{cases}}\)
Ta có:\(\frac{2}{a\left(b-x\right)}-\frac{2}{b\left(b-x\right)}=\frac{1}{a\left(c-x\right)}-\frac{1}{b\left(c-x\right)}\)
\(\Leftrightarrow\frac{2}{b-x}\left(\frac{1}{a}-\frac{1}{b}\right)=\frac{1}{c-x}\left(\frac{1}{a}-\frac{1}{b}\right)\)
\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)\left(\frac{2}{b-x}-\frac{1}{c-x}\right)=0\)
Nếu \(a=b\)thì phương trình đúng với mọi nghiệm x
Nếu \(a\ne b\)thì phương trình có nghiệm
\(\frac{2}{b-x}-\frac{1}{c-x}=0\)
\(\Leftrightarrow\frac{2\left(c-x\right)}{\left(c-x\right)\left(b-x\right)}-\frac{1\left(b-x\right)}{\left(c-x\right)\left(b-x\right)}=0\)
\(\Rightarrow2c-2x-b+x=0\)
\(\Leftrightarrow-x=b-2c\)
\(\Leftrightarrow x=2c-b\left(tmđkxđ\right)\)
Vậy ..............................................................................................
a. \(\frac{mx+5}{10}\)+ \(\frac{x+m}{4}\)=\(\frac{m}{20}\)
\(\frac{2mx+10}{20}\)+ \(\frac{5x+5m}{20}\)=\(\frac{m}{20}\)
2mx +10 + 5x +5m =m
x(2m+5)= -4m -10(1)
* 2m+5= 0 => m=-5/2
(1)<=> 0x=0 vậy phương trình 1 vô số nghiệm
* 2m+5 \(\ne\)0=> m\(\ne\)-5/2
pt (1)có nghiệm duy nhất là x= -2(2m+5): (2m+5)=-2
vậy với m=-5/2 phương trình đã cho vô số nghiệm
m\(\ne\)-5/2 phương trình đã cho có nghiệm duy nhất là x=-2
\(ĐK:x\ne\pm1\)
\(\Leftrightarrow\frac{ax^2-x+ax-1+bx-b}{x^2-1}=\frac{a\left(x^2+1\right)}{x^2-1}\)
\(\Leftrightarrow\frac{ax^2+x\left(a-1+b\right)-b-1}{x^2-1}=\frac{ax^2+a}{x^2-1}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne\pm1\\a+b-1=0\\-b-1=a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne\pm1\\a+b-1=0\\-b-1=a\end{cases}}\)
Giải ra :D
ĐK : \(\hept{\begin{cases}ax-1\ne0\\bx-1\ne0\\\left(a+b\right)x-1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}ax\ne1\\bx\ne1\\\left(a+b\right)x\ne1\end{cases}}}\) (2)
Ta có thể viết phương trình dưới dạng : \(abx\left[\left(a+b\right)x-2\right]=0\) (3)
TH1 : a = b = 0
Điều kiện 2 luôn đúng , khi có :
(3) \(\Leftrightarrow0x=0\), phương trình nghiệm đúng \(\forall x\in R\)
TH2 : Nếu \(\hept{\begin{cases}a=0\\b\ne0\end{cases}}\)
Điều kiện (2) trở thành \(x\ne\frac{1}{b}\), khi đó :
(3) \(\Leftrightarrow0x=0\), phương trình nghiệm đúng với mọi \(x\ne\frac{1}{b}\)
TH3 : Nếu \(\hept{\begin{cases}a\ne0\\b\ne0\end{cases}}\)
Điều kiện (2) trở thành \(x\ne\frac{1}{a}\), khi đó :
(3) \(\Leftrightarrow0x=0\), phương trình nghiệm đúng với \(\forall x\ne\frac{1}{a}\)
TH4 : Nếu '\(\hept{\begin{cases}a\ne0\\a+b=0\end{cases}\Leftrightarrow b=-a\ne0}\)
Điều kiện (2) trở thành \(x\ne\frac{1}{a}\)và \(x\ne\frac{1}{b}\)
Khi đó : (3) \(\Leftrightarrow x=0\), là nghiệm duy nhất của phương trình .
TH5 : Nếu \(\hept{\begin{cases}a\ne0\\b\ne0\\a+b\ne0\end{cases}}\)
Điều kiện (2) trở thành \(x\ne\frac{1}{a}\)và \(x\ne\frac{1}{b}\)và \(x\ne\frac{1}{a+b}\Rightarrow\)(2) \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{a+b}\end{cases}}\)
Nghiệm \(x=\frac{2}{a+b}\)chỉ thỏa mãn đk khi a\(\ne\)b
KL : ............
ĐKXĐ : x ≠ a , x ≠ b
pt <=> \(1+\frac{1}{x-a}-1-\frac{1}{x-b}-\frac{a}{\left(x-a\right)\left(x-b\right)}=0\)
<=> \(\frac{x-b}{\left(x-a\right)\left(x-b\right)}-\frac{x-a}{\left(x-a\right)\left(x-b\right)}-\frac{a}{\left(x-a\right)\left(x-b\right)}=0\)
<=> \(\frac{x-b-x+a-a}{\left(x-a\right)\left(x-b\right)}=0\)
<=> \(\frac{-b}{\left(x-a\right)\left(x-b\right)}=0\)
=> b = 0
Phương trình nghiệm đúng ∀ a
Với b = 0 => phương trình vô số nghiệm với x ≠ 0
Với b ≠ 0 => phương trình vô nghiệm x
KẾT LUẬN : ∀ a và b = 0 => phương trình vô số nghiệm với x ≠ 0
∀ a và b ≠ 0 => phương trình vô nghiệm
bài này hình như quy đồng vế trái là được nhé