(1+1/1x3)(1+1/2x4)(1+1/3x5)....(1+1/x(x+2))=31/16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét thừa số tổng quát $1+\frac{1}{n(n+2)}=\frac{n(n+2)+1}{n(n+2)}=\frac{(n+1)^2}{n(n+2)}$
Khi đó:
$1+\frac{1}{1.3}=\frac{2^2}{1.3}$
$1+\frac{1}{2.4}=\frac{3^2}{2.4}$
.........
$1+\frac{1}{99.101}=\frac{100^2}{99.101}$
Khi đó:
$A=\frac{2^2.3^2.4^2......100^2}{(1.3).(2.4).(3.5)....(99.101)}$
$=\frac{(2.3.4...100)(2.3.4...100)}{(1.2.3...99)(3.4.5...101)}$
$=\frac{2.3.4...100}{1.2.3..99}.\frac{2.3.4...100}{3.4.5..101}$
$=100.\frac{2}{101}=\frac{200}{101}$
\(\left(1+\frac{1}{1\times3}\right)\times\left(1+\frac{1}{2\times4}\right)\times\left(1+\frac{1}{3\times5}\right)\times...\times\left(1+\frac{1}{99.101}\right)\)
\(=\left(\frac{3}{3}+\frac{1}{3}\right)\times\left(\frac{8}{8}+\frac{1}{8}\right)\times\left(\frac{15}{15}+\frac{1}{15}\right)\times...\times\left(\frac{9999}{9999}+\frac{1}{9999}\right)\)
\(=\frac{4}{3}\times\frac{9}{8}\times\frac{16}{15}\times...\times\frac{10000}{9999}\)
\(=\frac{4\times9\times16\times...\times10000}{3\times8\times15\times...\times9999}\)
\(=\frac{2\times2\times3\times3\times4\times4\times...\times100\times100}{1\times3\times2\times4\times3\times5\times...\times99\times101}\)
\(=\frac{2\times100}{101}=\frac{200}{101}\)
Bạn xem bài tương tự tại đây. Đề là:
Tính $(1+\frac{1}{1.3})(1+\frac{1}{2.4})....(1+\frac{1}{2021.2023})$
Với x \(\inℕ\)ta có : 1 + x(x + 2) = x2 + 2x + 1 = (x + 1)2
Ta có \(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{x\left(x+2\right)}\right)=\frac{31}{16}\)
=> \(\left(\frac{1+1.3}{1.3}\right)\left(\frac{2.4+1}{2.4}\right)\left(\frac{3.5+1}{3.5}\right)....\left(\frac{x\left(x+2\right)+1}{x\left(x+2\right)}\right)=\frac{31}{16}\)
=> \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}....\frac{\left(x+1\right)^2}{x\left(x+2\right)}=\frac{31}{16}\)
=> \(\frac{2^2.3^2.4^2...\left(x+1\right)^2}{1.3.2.4.3.5...x\left(x+2\right)}=\frac{31}{16}\)
=> \(\frac{\left(2.3.4...\left(x+1\right)\right).\left(2.3.4....\left(x+1\right)\right)}{\left(1.2.3...x\right)\left(3.4.5...\left(x+2\right)\right)}=\frac{31}{16}\)
=> \(\frac{\left(x+1\right).2}{x+2}=\frac{31}{16}\)
=> 31(x + 2) = (x + 1).2.16
=> 31x + 62 = (x + 1).32
=> 31x + 62 = 32x + 32
=> 32x - 31x = 62 - 32
=> x = 30
Vậy x = 30
Giải phương trình nhé!