Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi O là trung điểm của BC.
Ta có \(\stackrel\frown{BD}=\stackrel\frown{DE}=\stackrel\frown{EC}\Rightarrow\widehat{BOD}=\widehat{DOE}=\widehat{EOC}=60^o\).
Từ đó CE // AB, BD // AC.
Suy ra \(\Delta ABN\sim\Delta ECN\).
b) Theo tính đối xứng ta có BM = CN.
Ta có \(\dfrac{BN}{NC}=\dfrac{AB}{CE}=\dfrac{AB}{CO}=2\Rightarrow BN=2NC\Rightarrow MN=NC\).
Dễ dàng suy ra đpcm.
tam giac abd bằng tam giac ace (c.g.c)
nên góc bad=góc cae
tam giac abi=tam giac acj(g,c,g)
nên bi=cj(1)
gọi o là trung điểm bc
vì góc oda=góc bad(=60-góc adb)
nên od//ab nên \(\frac{oi}{ib}=\frac{od}{ab}=\frac{od}{2ob}=\frac{1}{2}\)
nên oi=\(\frac{1}{2}\)ib hay 2oi=ib
nên ij=ib(2)
từ (1) và (2) suy ra bi=ij=jc
a) Do C là điểm chính giữa cung AB nên AC = BC
Xét tam giác ACN và tam giác BCM có:
AC = BC (cmt)
AN = BM (gt)
\(\widehat{CAN}=\widehat{MBC}\) (Hai góc nội tiếp cùng chắn cung CM)
\(\Rightarrow\Delta ACN=\Delta BCM\left(c-g-c\right)\)
b) Ta thấy \(\Delta ACN=\Delta BCM\Rightarrow CN=CM\)
Vậy tam giác CMN cân tại C.
Lại có \(\widehat{CMN}=\frac{\widebat{AC}}{2}=\frac{90^o}{2}=45^o\)
Vậy thì tam giác CMN cân, có góc ở đáy bằng 45o nên CMN là tam giác vuông cân.
c) Do DC//AM nên \(\widebat{DA}=\widebat{CM}\)
\(\Rightarrow\widebat{DM}=\widebat{CM}+\widebat{DC}=\widebat{AD}+\widebat{DC}=\widebat{AC}=90^o\)
\(\Rightarrow\widehat{DAM}=\frac{\widebat{DM}}{2}=45^o=\widehat{CNM}\)
Chúng lại ở vị trí đồng vị nên CN // AD.
Xét tứ giác ANCD có DC // AN; AD // CN nên ANCD là hình bình hành (dấu hiệu nhận biết).