cho tam giác ABC đều.D là một điểm trên BC.qua D kẻ đường thẳng song song AC cắt AB tại E.Qua D kẻ đường thẳng song song AB cắt AC tại F.a)CM BF=CE,b)P và Q lần lượt là trung điểm BF và CE.cm tam giác DPQ đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác DFCB có
DF//BC
CF//DB
Do đó: DFCB là hình bình hành
Suy ra: \(\widehat{ABC}=\widehat{CFE}\)
Xét ΔABC và ΔCFE có
\(\widehat{ABC}=\widehat{CFE}\)(cmt)
\(\widehat{BAC}=\widehat{FCE}\)(hai góc so le trong, BA//CF)
Do đó: ΔABC\(\sim\)ΔCFE(g-g)
Suy ra: \(\dfrac{AB}{CF}=\dfrac{AC}{CE}\)
hay \(AB\cdot CE=AC\cdot CF\)
b)
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
a: Xét tứ giác AEMF có
AE//MF
AF//ME
Do đó: AEMF là hình bình hành
Hình bình hành AEMF có \(\widehat{FAE}=90^0\)
nên AEMF là hình chữ nhật
b: Để hình chữ nhật AEMF là hình vuông thì AM là phân giác của \(\widehat{FAE}\)
=>AM là tia phân giác của \(\widehat{BAC}\)
=>M là chân đường phân giác kẻ từ A xuống BC