giúp mình phần b với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL:
Sai nhé bạn
Bạn k cho mik cái đi nhé
@@@@@@@@@@@@@@@@@
HT
Xét hiệu:
\(\frac{a}{b}-\frac{a+2007}{b+2007}=\frac{a.\left(b+2007\right)-b.\left(a+2007\right)}{b.\left(b+2007\right)}=\frac{ab+2007a-ab+2007b}{b.\left(b+2007\right)}=\frac{2007.\left(a-b\right)}{b.\left(b+2007\right)}\)
Xét 3 trường hợp:
TH1: a=b\(\Rightarrow\)a-b=0\(\Rightarrow\)\(\frac{2007.\left(a-b\right)}{b.\left(b+2007\right)}=\frac{2007.0}{b.\left(b+2007\right)}=0\)\(\Rightarrow\frac{a}{b}=\frac{a+2007}{b+2007}\)
TH2: a<b\(\Rightarrow\)a-b<0\(\Rightarrow\)\(2007.\left(a-b\right)< 0\Rightarrow\frac{2007.\left(a-b\right)}{b.\left(b+2007\right)}< 0\)\(\Rightarrow\frac{a}{b}< \frac{a+2007}{b+2007}\)
TH3: a>b\(\Rightarrow\)a-b>0\(\Rightarrow\)\(2007.\left(a-b\right)>0\Rightarrow\frac{2007.\left(a-b\right)}{b.\left(b+2007\right)}>0\)\(\Rightarrow\frac{a}{b}>\frac{a+2007}{b+2007}\)
Vậy với a=b thì \(\frac{a}{b}=\frac{a+2007}{b+2007}\)
a<b thì \(\frac{a}{b}< \frac{a+2007}{b+2007}\)
a>b thì \(\frac{a}{b}>\frac{a+2007}{b+2007}\)
Thay m=2 vào HPT ta có:
\(\left\{{}\begin{matrix}2x+y=1\\x+2y=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}4x+2y=2\\x+2y=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}4x+2y=2\\3x=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}mx+y=1\\x+my=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=1-mx\\x+m\left(1-mx\right)=1\left(1\right)\end{matrix}\right.\)
(1) ⇔x+m-m2x=1
⇔x(1-m2)=1-m (2)
TH1: 1-m2 = 0
⇔m = +- 1
Thay m=1 vào (2) ta có: 0x=0 (Luôn đúng) ⇒m=1 (chọn)
Thay m=-1 vào (2) ta có: 0x=2 (Vô lí) ⇒m=-1 (loại)
TH2: 1-m2 ≠0
⇔m≠ +-1
⇒HPT có nghiệm duy nhất:
x= \(\dfrac{1-m}{1-m^2}\)
⇒y= \(1-m.\dfrac{1-m}{1-m^2}\)
⇔y=\(\dfrac{1-m}{1-m^2}\)
Dễ thấy x=y nên:
\(\dfrac{1-m}{1-m^2}>0\)
⇔1-m>0
⇔m<1
Vậy m <1 thì Thỏa mãn yêu cầu đề bài.
Lời giải:
a. $\overrightarrow{BC}=(-8; 6)$
Vì đt cần tìm nhận $\overrightarrow{BC}$ là VTPT nên nó có dạng
$-8(x-1)+6(y+2)=0$
$\Leftrightarrow -4x+3y+10=0$
b. Gọi $I(a,b)$ là tâm đường tròn ngoại tiếp tam giác $ABC$.
Ta có: $IA^2=IB^2=IC^2$
$\Leftrightarrow (a-1)^2+(b+2)^2=(a-5)^2+(b+4)^2=(a+3)^2+(b-2)^2$
\(\Leftrightarrow \left\{\begin{matrix} 8a-4b-36=0\\ -8a+8b-8=0\\ -16a+12b+28=0\end{matrix}\right.\Leftrightarrow a=10; b=11\)
$R^2=IA^2=(a-1)^2+(b+2)^2=(10-1)^2+(11+2)^2=250$
PTĐTr cần tìm là:
$(x-10)^2+(y-11)^2=250$
a: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-5\right)\)
\(=4m^2-8m+4-8m+20\)
\(=4m^2-16m+24\)
\(=4m^2-16m+16+8=\left(2m-4\right)^2+8>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
b: Để phương trình có hai nghiệm trái dấu thì 2m-5<0
hay m<5/2
tui tưởng phải dùng \(\dfrac{\Delta>0 }{\dfrac{x1x2< 0}{x1+x2>0}}\)