Trong tam giác ABC, đường phân giác của góc BAC cắt cạnh BC tại D. Giả sử (T) là đường tròn tiếp xúc với BC tại D và đi qua điểm A. Gọi M là giao điểm thứ hai của (T) và AC, P là giao điểm thứ hai của (T) và BM, E là giao điểm của AP và BC. Chứng minh rằng BE2 = EP.EA.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
If mày định trình bày một idea nào đó, mày should dùng brain của mày
Không mất tính tổng quát , giả sử AB < AC ( bỏ qua trường hợp đơn giản AB = AC )
Dễ thấy P là điểm chính giữa \(\widebat{EF}\) nên D,N,P thẳng hàng
Cần chứng minh \(\widehat{IMC}=\widehat{PDC}\)
Ta có : \(\widehat{IMC}=\widehat{MIB}+\widehat{B_1}=\frac{1}{2}\widehat{BIC}+\widehat{B_1}=\frac{1}{2}\left(180^o-\widehat{B_1}-\widehat{C_1}\right)+\widehat{B_1}\)
\(=\frac{1}{2}\left(180^o-\frac{\widehat{ABC}}{2}-\frac{\widehat{ACB}}{2}\right)+\frac{\widehat{ABC}}{2}=90^o+\frac{\widehat{ABC}}{4}-\frac{\widehat{ACB}}{4}\)
\(\widehat{PDC}=\widehat{PDE}+\widehat{EDC}=\frac{1}{2}\widehat{EDF}+\widehat{EDC}\)\(=\frac{1}{2}\left(180^o-\widehat{FDB}-\widehat{EDC}\right)+\widehat{EDC}\)
\(=90^o-\frac{\widehat{FDB}}{2}+\frac{\widehat{EDC}}{2}=90^o-\frac{90^o-\widehat{B_1}}{2}+\frac{90^o-\widehat{C_1}}{2}\)
\(=90^o+\frac{\widehat{ABC}}{4}-\frac{\widehat{ACB}}{4}\)
\(\Rightarrow\widehat{IMC}=\widehat{PDC}\Rightarrow IM//ND\)
b) Theo câu a suy ra \(\widehat{MID}=\widehat{IDP}\)
Mà \(\Delta PID\)cân tại I ( do IP = ID ) nên \(\widehat{IPD}=\widehat{IDP}\)
Suy ra \(\widehat{MID}=\widehat{IPD}=\widehat{QPN}\)
\(\Rightarrow\Delta IDM\approx\Delta PQN\left(g.g\right)\)
c) từ câu b \(\Rightarrow\frac{IM}{PN}=\frac{ID}{PQ}=\frac{IP}{PQ}\)( 1 )
Theo hệ thức lượng, ta có : \(IQ.IA=IE^2=IP^2\)
Do đó : \(\frac{QP}{IP}=1-\frac{IQ}{IP}=1-\frac{IP}{IA}=\frac{PA}{IA}\)
Suy ra \(\frac{IP}{QP}=\frac{IA}{PA}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{IM}{PN}=\frac{IA}{PA}\)kết hợp với IM // PN suy ra A,M,N thẳng hàng
gọi AB giao ( T ) tại K
có AD là tia phân giác của BAC => sđ cung KD = sđ MD
mà PBE = 1/2 ( sđ MD - sđ PD) =1/2 ( sđ KD-sđ PD ) =1/2 sđ KP = BAE
khi CM đc tam giác ABE ~ tam giác BPE ( g - g)
=> BE2 = EP.EA
gọi AB giao (T) tại K
Có AD là tia phân giác của BAC =>sđ cung KD= sđ MD
Mà PBE =1/2(sđMD-sđPD)=1/2(sđKD-sđPD)=1/2sđKP=BA
Ta CM được : tam giác ABE~tam giác BPE(g.g)
=>BE^2=EP.EA