\(\left(x+1\right)^4\)+\(\left(x-3\right)^4\)=82
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x+3)4+(x+5)4=16
<=>(x+3)4+(x+5)4=04+24
TH1: \(\left\{{}\begin{matrix}x+3=0\\x+5=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=-3\end{matrix}\right.\Leftrightarrow x=-3\)
TH2:\(\left\{{}\begin{matrix}x+3=2\\x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)(loại)
b)(x-2)4+(x-3)4=1=04+14
TH1: \(\left\{{}\begin{matrix}x-2=0\\x-3=1\end{matrix}\right.\)loại
TH2: \(\left\{{}\begin{matrix}x-2=1\\x-3=0\end{matrix}\right.\)=>x=3.
c)(x+1)4+(x-3)4=82=34+(-1)4
làm tương tự => x=2.
d) làm tương tự câu b
a) Sửa đề
\(\left(x+1\right)^4-\left(x-3\right)^4=82\)
Đặt x - 1 = a
\(\left(a+2\right)^4-\left(a-2\right)^4=82\)
\(\Rightarrow\left[\left(a+2\right)^2\right]^2-\left[\left(a-2\right)^2\right]^2=82\)
\(\Rightarrow\left(a^2+4a+4\right)^2-\left(a^2-4a+4\right)^2=82\)
\(\Rightarrow\left(a^2+4\right)^2+8a\left(a^2+4\right)+16a^2+\left(a^2+4\right)^2-8a\left(a^2+4\right)+16a^2=82\)
\(\Rightarrow\left(a^2+4\right)^2+16a^2=41\)
\(\Rightarrow a^4+8a^2+16+16a^2=41\)
\(\Rightarrow a^4+24a^2=25\)
\(\Rightarrow a^4+24a^2-25=0\)
\(\Rightarrow a^4-a^2+25a^2-25=0\)
\(\Rightarrow a^2\left(a^2-1\right)+25\left(a^2-1\right)=0\)
\(\Rightarrow\left(a^2-1\right)\left(a^2+25\right)=0\)
\(\Rightarrow\left(a-1\right)\left(a+1\right)\left(a^2+25\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\\a^2+25=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=1\\a=-1\\a^2=-25\end{matrix}\right.\)
Do a2= -25 không tồn tại
Vậy a = 1 ; a = -1
b) \(\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-2\right)=24\)
\(\Rightarrow\left[\left(x-1\right)\left(x-2\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]=24\)
\(\Rightarrow\left(x^2-3x+2\right)\left(x^2+3x+2\right)=24\)
\(\Rightarrow\left(x^2+2\right)^2-\left(3x\right)^2=24\)
\(\Rightarrow x^4+4x^2+4-9x^2-24=0\)
\(\Rightarrow x^4-5x^2-20=0\)
\(\Rightarrow\left(x^2\right)^2-2.x^2\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{25}{4}-20=0\)
\(\Rightarrow\left(x^2-\dfrac{5}{2}\right)^2-\dfrac{105}{4}=0\)
\(\Rightarrow\left(x^2-\dfrac{5}{2}\right)^2=\dfrac{105}{4}\)
\(\Rightarrow\left(x^2-\dfrac{5}{2}\right)=\left(\dfrac{\sqrt{105}}{2}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x^2-\dfrac{5}{2}=\dfrac{\sqrt{105}}{2}\\x^2-\dfrac{5}{2}=-\dfrac{\sqrt{105}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2=\dfrac{5+\sqrt{105}}{2}\\x^2=\dfrac{5-\sqrt{105}}{2}\end{matrix}\right.\)
...
Đặt \(x+2=t\)
\(\Rightarrow\left(x+1\right)^4+\left(x+3\right)^4=82\)
\(\Leftrightarrow\left(t-1\right)^4+\left(t+1\right)^4=82\)
\(\Leftrightarrow\left[\left(t-1\right)^2\right]^2+\left[\left(t+1\right)^2\right]^2=82\)
\(\Leftrightarrow\left(t^2-2t+1\right)^2+\left(t+2t+1\right)^2=82\)
\(\Leftrightarrow\left(t^2+1\right)^2-4t\left(t^2+1\right)+4t^2+\left(t^2+1\right)^2+4t\left(t^2+1\right)+4t^2=82\)
\(\Leftrightarrow\left(t^2+1\right)^2+4t^2=41\)
\(\Leftrightarrow t^4+6t^2+1=41\)
\(\Leftrightarrow t^4+6t^2-40t=0\)
\(\Leftrightarrow\left[\begin{matrix}t^2=-10\left(lo\text{ại}\right)\\t^2=4\Rightarrow\left[\begin{matrix}t=2\\t=-2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Bài này có hai cách giải:
*Cách 1:
Đặt t = x + 3
=> x + 2 = t - 1; x + 4 = t + 1.
ta có pt: (t - 1)^4 + (t + 1)^4 = 82
<=>[(t -1)²]² + [(t + 1)²]² = 82
<=> (t² - 2t + 1)² + (t² + 2t + 1)² = 82
<=> (t²+1)² - 4t(t²+1) + 4t² + (t²+1)² + 4t(t²+1) + 4t² = 82
<=> (t² + 1)² + 4t² = 41
<=> t^4 + 6t² + 1 = 41
<=> (t²)² + 6t² - 40 = 0
<=> t² = -10 (loại) hoặc t² = 4
<=> t = 2 hoặc t = -2
với t = -2 => x = -5
với t = 2 => x = -1
vậy pt có hai nghiệm là : x = -1 hoặc x = -5
*Tổng quát:
(x+a)^4 + (x+b)^4 = c
đặt: t = x + (a+b)/2, sau khi chuyển qua ẩn phụ rồi khai triển chắc chắn sẽ ra pt trùng phương.
**Cách 2/ chú ý hai hằng đẳng thức:
a² + b² = (a - b)² + 2ab. và
a² + b² = (a + b)² - 2ab.
pt: (x + 2)^4 + (x + 4)^4 = 82
Đặt: t = (x + 2)(x + 4). ta có:
*(x+2)² + (x+4)² = [(x+2)-(x+4)]² + 2(x+2)(x+4) =
= (-2)² + 2t = 4 + 2t
*(x + 2)^4 + (x + 4)^4 = [(x + 2)²]² + [(x + 4)²]² =
= [(x+2)² + (x+4)²]² - 2(x+2)².(x+4)² =
= [4 + 2t]² - 2t²
= 16 + 16t + 4t² - 2t²
thay vào pt đã cho ta có:
16 + 16t + 2t² = 82
<=> t² + 8t - 33 = 0
<=> t = -11 hoặc t = 3
+Với t = -11:
(x + 2)(x + 4) = -11
<=> x² + 6x +19 = 0 => vn
+Với t = 3:
(x + 2)(x + 4) = 3
<=> x² + 6x + 5 = 0
<=> x = -1 hoặc x = -5
(x + 1)4 + (x - 3)4 = 82
\(\Leftrightarrow\) (x2 + 2x + 1)2 + (x2 - 6x + 9)2 = 82
\(\Leftrightarrow\) x4 + 4x2 + 1 + 4x3 + 4x + 2x2 + 4x2 + x4 + 36x2 + 81 - 12x3 - 108x + 18x2 - 82 = 0
\(\Leftrightarrow\) 2x4 - 8x3 + 60x2 - 104x = 0
\(\Leftrightarrow\) x4 - 4x3 + 30x2 - 52x = 0
\(\Leftrightarrow\) x(x3 - 4x2 + 30x - 52) = 0
\(\Leftrightarrow\) x(x3 - 2x2 - 2x2 + 4x + 26x - 52) = 0
\(\Leftrightarrow\) x[x2(x - 2) - 2x(x - 2) + 26(x - 2)] = 0
\(\Leftrightarrow\) x(x - 2)(x2 - 2x + 26) = 0
Ta có: x2 - 2x + 26 = x2 - 2x + 1 + 25 = (x - 1)2 + 25 > 0 với mọi x
\(\Rightarrow\) \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy S = {0; 2}
Chúc bn học tốt!
Ta có: \(\left(x+1\right)^4+\left(x-3\right)^4=82\)
\(\Leftrightarrow\left(x^2+2x+1\right)^2+\left(x^2-6x+9\right)^2=82\)
\(\Leftrightarrow x^4+4x^2+1+4x^3+2x^2+4x+x^4+36x^2+81-12x^3+18x^2-108x-82=0\)
\(\Leftrightarrow2x^4-8x^3+60x^2-104x=0\)
\(\Leftrightarrow x\left(2x^3-8x^2+60x-104\right)=0\)
\(\Leftrightarrow x\left(2x^3-4x^2-4x^2+8x+52x-104\right)=0\)
\(\Leftrightarrow x\left[2x^2\left(x-2\right)-4x\left(x-2\right)+52\left(x-2\right)\right]=0\)
\(\Leftrightarrow x\left(x-2\right)\left(2x^2-4x+52\right)=0\)
mà \(2x^2-4x+52>0\forall x\)
nên x(x-2)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy: S={0;2}