Tiìm GTLN hoặc GTNN của biểu thức: C=2x+1/x^2+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-4x+7=\left(x^2-4x+4\right)+3=\left(x-2\right)^2+3\)
Vì: \(\left(x-2\right)^2\ge0\)
=> \(\left(x-2\right)^2+3\ge3\)
Vậy GTNN của A là 3 khi x=2
\(B=2x^2+12x-1=2\left(x^2+6x+9\right)-19=2\left(x+3\right)^2-19\)
Vì: \(2\left(x+3\right)^2\ge0\)
=> \(2\left(x+3\right)^2-19\ge-19\)
Vậy GTNN của B là -19 khi x=-3
\(C=5x-x^2=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)
Vì: \(-\left(x-\frac{5}{2}\right)^2\le0\)
=> \(-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Vậy GTLN của C là \(\frac{25}{4}\) khi \(x=\frac{5}{2}\)
Căm ơn bạn nhiều nhé ! Nếu được thì bạn làm giúp tớ bài hình bên trên nhé.
A = x2 - 4x + 1 = (x2 - 2.x.2 + 4) - 3 = (x - 2)2 - 3 \(\ge\) -3
Vậy: GTNN của A là -3 (tại x = 2)
B = -2x2 + 2x = -2(x2 - x) = -2\(\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)\)
= -2\(\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\) \(\le\frac{1}{2}\)
Vậy: GTLN của B là \(\frac{1}{2}\) tại x = \(\frac{1}{2}\)
C = x2 + y2 + 2x + 2y = (x2 + 2x + 1) + (y2 + 2y + 1) - 2
= (x + 1)2 + (y + 1)2 - 2 \(\ge\) -2
Vậy: GTNN của C là -2 tại x = -1 ; y = -1
D = x2 - 4xy + 5y2 - y = (x2 - 4xy + 4y2) + (y2 - y + \(\frac{1}{4}\)) - \(\frac{1}{4}\)
= (x - 2y)2 + (y - \(\frac{1}{2}\))2 - \(\frac{1}{2}\ge-\frac{1}{2}\)
Vậy: GTNN của D là \(\frac{-1}{4}\) tại x = 1 ; y = \(\frac{1}{2}\)
\(A=x^2+x\) . Có: \(x^2\ge x\Rightarrow x^2+x\ge0\)
Dấu '=' xảy ra khi: \(x^2+x=0\Rightarrow x\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy: \(Min_A=0\) tại \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
\(B=4x-12x+10\)
\(B=-8x+10\)
\(B=10-8x\)
Xét: \(x< 0\Rightarrow10-8x\ge10\)
Dấu '=' xảy ra khi: \(8x=0\Rightarrow x=0\)
Xét: \(x>0\Rightarrow10-8x\le10\)
Dấu '=' xảy ra khi: \(8x=0\Rightarrow x=0\)
Vậy: Khi x<0. \(Min_B=10\) tại \(x=0\)
Khi: x>0. \(Max_B=10\)tại \(x=0\)
K chắc
ta có: \(D=x^2-2x+3\)
=>\(D=x^2-2x+1^2-1+3\)
=>\(D=\left(x-1\right)^2-2\)
Do \(\left(x-1\right)^2\ge0\) với mọi x (dấu "=" xảy ra <=> x=1)
=>\(\left(x-1\right)^2-2\ge-2\) hay \(D\ge-2\) với mọi x (dấu "=" xảy ra <=> x=1)
Vậy MIN D=\(-2\) tại x=1
ta có : \(x^2-2x+3=x^2-2x+1+2=\left(x-1\right)^2+2\ge2\)
\(\Rightarrow D_{max}\) là \(2\) khi \(x=1\)
\(Q=-5\left|x+\frac{1}{2}\right|+2021\le2021\forall x\)
Dấu ''='' xảy ra khi x = -1/2
Vậy GTLN của Q là 2021 khi x = -1/2
\(C=\frac{5}{3}\left|x-2\right|+2\ge2\forall x\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN của C là 2 khi x = 2
a) \(A=2\left|x-3\right|+\left|2x-10\right|=\left|2x-3\right|+\left|10-2x\right|\ge\left|2x-3+10-2x\right|=7\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-3\right)\left(10-2x\right)\ge0\)\(\Leftrightarrow\)\(\frac{3}{2}\le x\le5\)
b) \(B\left|\frac{1}{4}x-8\right|+\left|2-\frac{1}{4}x\right|\ge\left|\frac{1}{4}x-8+2-\frac{1}{4}x\right|=6\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(\frac{1}{4}x-8\right)\left(2-\frac{1}{4}x\right)\ge0\)\(\Leftrightarrow\)\(8\le x\le32\)
\(A=x^2-4x+1\)
\(A=x^2-4x+4-3\)
\(A=\left(x-2\right)^2-3\)
Min A = -3
Min A xảy ra khi (x-2)2=0
x-2=0
x=2
A đến C là tìm GTNN
\(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)
Dấu "=" xảy ra ⇔ x=2
\(B=2x^2-x+1=2\left(x^2-2.\dfrac{1}{4}x+\dfrac{1}{16}\right)+\dfrac{7}{8}=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{4}\)
\(C=x^2-x+1=\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)
A= 1/(x^2+2x+3)
Ta có x^2+2x+3=(x+1)^2 +2
Vì (x+1) ^2 \(\ge\)0 với mọi x
=> (x+1)^2 +2\(\ge\)2 với mọi x
=> vậy GTLN của 1/(x^2+2x+3) =1/2
Dấu bằng xảy ra khi x+1=0 => x=-1
\(C=\dfrac{x^2+2-\left(x^2-2x+1\right)}{x^2+2}=1-\dfrac{\left(x-1\right)^2}{x^2+2}\le1\)
\(C_{max}=1\) khi \(x=1\)
\(C=\dfrac{4x+2}{2\left(x^2+2\right)}=\dfrac{-x^2-2+x^2+4x+4}{2\left(x^2+2\right)}=-\dfrac{1}{2}+\dfrac{\left(x+2\right)^2}{x^2+2}\ge-\dfrac{1}{2}\)
\(C_{min}=-\dfrac{1}{2}\) khi \(x=-2\)
Nhập Mode 7 , chạy trong khoản trung lập (-10;10)
tìm đc \(\begin{cases} C max = 1 khi x=1\\C min =-\dfrac{1}{2} khi x=-2 \end{cases}\)
Dùng cách này bạn giải trắc nghiệm sẽ nhanh hơn