K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2021

\(\overrightarrow{AB}=\left(-1;-4\right)\)

Ta có: ABCD là hình bình hành

nên \(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow\overrightarrow{DC}=\left(-1;-4\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_D-3=-1\\y_D-3=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_D=2\\y_D=-1\end{matrix}\right.\)

30 tháng 12 2021

\(\overrightarrow{CA}=\left(1-x_C;-2\right)\)

\(\overrightarrow{CB}=\left(-2-x_C;2\right)\)

\(\Leftrightarrow\left(x_C-1\right)\left(x_C+2\right)-4=0\)

\(\Leftrightarrow x_C^2+x_C-6=0\)

hay \(x_C=-3\)

5 tháng 12 2023

 a) Ta thấy \(\overrightarrow{AB}\left(3;2\right)\) và \(\overrightarrow{AC}\left(4;-3\right)\). Vì \(\dfrac{3}{4}\ne\dfrac{2}{-3}\) nên A, B, C không thẳng hàng.

 b) Ta có \(\overrightarrow{BC}\left(1;-5\right)\) 

 Do vậy \(AB=\left|\overrightarrow{AB}\right|=\sqrt{3^2+2^2}=\sqrt{13}\)

\(AC=\left|\overrightarrow{AC}\right|=\sqrt{4^2+\left(-3\right)^2}=5\)

\(BC=\left|\overrightarrow{BC}\right|=\sqrt{1^2+\left(-5\right)^2}=\sqrt{26}\)

\(\Rightarrow C_{ABC}=AB+AC+BC=5+\sqrt{13}+\sqrt{26}\)

c) Gọi M, N, P lần lượt là trung điểm BC, CA, AB.

\(\Rightarrow P=\left(\dfrac{x_A+x_B}{2};\dfrac{y_A+y_B}{2}\right)=\left(-\dfrac{3}{2};3\right)\)

\(N=\left(\dfrac{x_A+x_C}{2};\dfrac{y_A+y_C}{2}\right)=\left(-1;\dfrac{1}{2}\right)\)

\(M=\left(\dfrac{x_B+x_C}{2};\dfrac{y_B+y_C}{2}\right)=\left(\dfrac{1}{2};\dfrac{3}{2}\right)\)

 d) Gọi G là trọng tâm tam giác ABC thì \(G=\left(\dfrac{x_A+x_B+x_C}{3};\dfrac{y_A+y_B+y_C}{3}\right)=\left(-\dfrac{2}{3};\dfrac{5}{3}\right)\)

 e) Gọi \(D\left(x_D;y_D\right)\) là điểm thỏa mãn ycbt.

Để ABCD là hình bình hành thì \(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow\left(3;2\right)=\left(1-x_D;-1-y_D\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}3=1-x_D\\2=-1-y_D\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_D=-2\\y_D=-3\end{matrix}\right.\)

\(\Rightarrow D\left(-2;-3\right)\) 

f) Bạn xem lại đề nhé.

22 tháng 4 2020

Bài 1 :

Với x = 1 thì y = 4.1 = 4

Ta được \(A\left(1;4\right)\) thuộc đồ thị hàm số y = f(x) = 4x

Đường thẳng OA là đồ thị hàm số y = f(x) = 4x

y x 4 3 2 1 1 2 3 4 -1 -2 -3 -4 y=4x A

a) Ta có : \(f\left(2\right)=4\cdot2=8\)

\(f\left(-2\right)=4\cdot\left(-2\right)=-8\)

\(f\left(4\right)=4\cdot4=16\)

\(f\left(0\right)=4\cdot0=0\)

b) +) y = -1 thì \(4x=-1\) => \(x=-\frac{1}{4}\)

+) y = 0 thì 4x = 0 => x = 0

+) y = 2,5 thì 4x = 2,5 => \(4x=\frac{5}{2}\)=> x = \(\frac{5}{8}\)

Bài 2 :

a) Vẽ tương tự như bài 1 

b) Thay \(M\left(-2,6\right)\)vào đths y = -3x ta có :

y =(-3)(-2) = 6

=> Điểm M thuộc đths y = -3x

c) Thay tung độ của P là 5 vào đồ thị hàm số y = -3x ta có :

=> 5 = -3x => \(x=-\frac{5}{3}\)

Vậy tọa độ của điểm P là \(P\left(-\frac{5}{3};5\right)\)

10 tháng 6 2018

Đáp án C

24 tháng 9 2023

Tham khảo:

a) Tập xác định \(D = \{  - 2; - 1;0;1;2;3;4\} \)

b) Đồ thị gồm 7 điểm A (-2; 8), B (-1; 3), O (0; 0), D (1; -1), E (2; 0), G (3; 3), H (4; 8) như hình dưới

25 tháng 11 2021

Tham khảo

 

a,⇒C,A,Da,⇒C,A,D thẳngthẳng hàng⇒−−→CA+−−→CD=→0⇔−−→CA=−−→DChàng⇒CA→+CD→=0→⇔CA→=DC→

D(x;y)⇒−−→CA=−−→DC⇔{−1−x=2−2−y=0D(x;y)⇒CA→=DC→⇔{−1−x=2−2−y=0⇔{x=−1y=−2⇔{x=−1y=−2⇔{x=−3y=−2⇔{x=−3y=−2⇒D(−3;−2)⇒D(−3;−2)

b,E(xo;yo)⇒−−→AE=−−→BCb,E(xo;yo)⇒AE→=BC→⇔{xo−1=−3yo+2=−5⇔{xo−1=−3yo+2=−5⇔{xo=−2yo=−7⇔{xo=−2yo=−7⇒E(−2;−7)⇒E(−2;−7)

c,⇒G(xG;yG)⇒⎧⎪ ⎪⎨⎪ ⎪⎩xG=1+2−13=23yG=−2+3−23=−13c,⇒G(xG;yG)⇒{xG=1+2−13=23yG=−2+3−23=−13⇒G(23;−13)

25 tháng 11 2021

bạn ơi bạn có thể viết rõ câu trả lời hơn được không vì nó khó hiểu quá