Ix+1I+Ix+2I+Ix+3I+Ix+4I=x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
\(\left|x-1\right|+\left|x-2\right|+\left|y-3\right|+\left|x-4\right|\)
\(=\left|x-1\right|+\left|x-2\right|+\left|y-3\right|+\left|4-x\right|\)
\(\ge\left|x-1+4-x\right|+\left|x-2\right|+\left|y-3\right|\)
\(=3+\left|x-2\right|+\left|y-3\right|\)
\(\ge3\)
Dấu "=" xả ra khi \(\hept{\begin{cases}\left(x-1\right)\left(4-x\right)\ge0\\\left|x-2\right|=0\\\left|y-3\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}1\le x\le4\cdot\\x=2\left(TM\cdot\right)\\y=3\end{cases}}\)
Vậy \(x=2;y=3\)
(x-1) + (x-2) + (x-3) + (x-4) = 3
(x+x+x+x) - (1+2+3+4) = 3
X x 4 - 10 = 3
X x 4 = 3 + 10
X x 4 = 13
x = 13 : 4
x = \(\frac{13}{4}\)
Làm mẫu 1 phần :
a) \(|3x-1|+|x-1|=4\left(1\right)\)
Ta có: \(3x-1=0\Leftrightarrow x=\frac{1}{3}\)
\(x-1=0\Leftrightarrow x=1\)
Lập bảng xét dấu :
+) Với \(x< \frac{1}{3}\Rightarrow\hept{\begin{cases}3x-1< 0\\x-1< 0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=1-3x\\|x-1|=1-x\end{cases}\left(2\right)}}\)
Thay (2) vào (1) ta được :
\(\left(1-3x\right)+\left(1-x\right)=4\)
\(2-4x=4\)
\(4x=-2\)
\(x=\frac{-1}{2}\)( chọn )
+) Với \(\frac{1}{3}\le x< 1\Rightarrow\hept{\begin{cases}3x-1>0\\x-1< 0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=3x-1\\|x-1|=1-x\end{cases}\left(3\right)}}\)
Thay (3) vào (1) ta được :
\(\left(3x-1\right)+\left(1-x\right)=4\)
\(2x=4\)
\(x=2\)( chọn )
+) Với \(x\ge1\Rightarrow\hept{\begin{cases}3x-1>0\\x-1>0\end{cases}\Rightarrow}\hept{\begin{cases}|3x-1|=3x-1\\|x-1|=x-1\end{cases}\left(4\right)}\)
Thay (4) vào (1) ta được :
\(\left(3x-1\right)+\left(x-1\right)=4\)
\(4x-2=4\)
\(4x=6\)
\(x=\frac{3}{2}\)( chọn )
Vậy \(x\in\left\{\frac{-1}{2};2;\frac{3}{2}\right\}\)
ko có đáp án