3/1^2.2^2+5/2^2.3^2+7/3^2.4^2+...+29/14^2.15^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)
\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{10^2-9^2}{9^2.10^2}\)
\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)
\(=1-\frac{1}{10^2}< 1\)
\(C=...\)
\(=\frac{1}{3^2}+\frac{1}{4^2}-\frac{1}{4^2}+\frac{1}{5^2}-\frac{1}{5^2}+...-\frac{1}{14^2}+\frac{1}{14^2}-\frac{1}{15^2}\)
\(=\frac{1}{3^2}-\frac{1}{15^2}\)
\(=\frac{1}{9}-\frac{1}{225}\)
Do \(\frac{1}{9}-\frac{1}{225}\)<\(\frac{1}{5}\)
\(=>C< \frac{1}{5}\)( ĐPCM )
C = ...
=> C = \(\frac{1}{3^2}-\frac{1}{4^2}+\frac{1}{4^2}-\frac{1}{5^2}+...+\frac{1}{14^2}-\frac{1}{15^2}\)
C = \(\frac{1}{3^2}-\frac{1}{15^2}\)
Ta thấy : \(\frac{1}{3^2}< \frac{1}{5}\Leftrightarrow\frac{1}{3^2}-\frac{1}{15^2}< \frac{1}{5}\)
=> C < \(\frac{1}{5}\)
A =2^2-1^2/1^2.2^2 + 3^2-2^2/2^2.3^2 + ..... + 2016^2-2015^2/2015^2.2016^2
= 1/1^2-1/2^2+1/2^2-1/3^2+.....+1/2015^2-1/2016^2
= 1-1/2016^2 < 1
=> ĐPCM
k mk nha
Mk hơi bối rối,bn dùng cái gõ phương trình trên thanh công cụ được ko.
\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)
\(=\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+...+\dfrac{19}{81.100}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{81}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}< 1\left(dpcm\right)\)
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)
\(=\left(\frac{1}{1^2}-\frac{1}{2^2}\right)+\left(\frac{1}{2^2}-\frac{1}{3^2}\right)+\left(\frac{1}{3^2}-\frac{1}{4^2}\right)+...+\left(\frac{1}{9^2}-\frac{1}{10^2}\right)\)
\(=\frac{1}{1}-\frac{1}{10^2}\)
\(=1-\frac{1}{100}<1\)
Vậy _____________________
=3/1.4+5/4.9+7/9.16+......+19/81.100
=(1/1-1/4)+(1/4-1/9)+........+(1/81-1/100)
=1-1/100
=99/100<1(đpcm)
Ta có: \(\frac{3}{1^2.2^2}=\frac{1}{1^2}-\frac{1}{2^2}\); \(\frac{5}{2^2.3^2}=\frac{1}{2^2}-\frac{1}{3^2}\); \(\frac{7}{3^2.4^2}=\frac{1}{3^2}-\frac{1}{4^2}\);....; \(\frac{4031}{2015^2.2016^2}=\frac{1}{2015^2}-\frac{1}{2016^2}\)
=> \(A=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2015^2}-\frac{1}{2016^2}\)
=> \(A=1-\frac{1}{2016^2}< 1\)
=> A < 1
\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)
\(=\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+...+\dfrac{19}{81.100}\)\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{81}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}< 1\)