Thu gọn các biểu thức sau:
1+5427
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (5x3 + 7x2y4 + 18y2) + (2x3 - 5x2y4 - 12y2)
= 5x3 + 7x2y4 + 18y2 + 2x3 - 5x2y4 - 12y2
= 7x3 + 2x2y4 + 6y2
Bậc của đa thức là 6
Thay x = 1; y = -1 vào ta có:
7 x 13 + 2 x 12 x (-1)4 + 6 x (-1)4 = 7 x 1 + 2 x 1 x 1 + 6 x 1 = 7 + 2 + 6 = 15
b) \(\left(15x^3y-9x^2y^5+2y^4\right)-\left(18x^3y-6y^4-3x^2y^5\right)\)
\(=15x^3y-9x^2y^5+2y^4-18x^3y+6y^4+3x^2y^5\)
\(=-3x^3y-6x^2y^5+8y^4\)
Bậc của đa thức là 7
Thay x = 1; y = -1 vào ta có:
(-3) x 13 x (-1) - 6 x 12 x (-1)5 + 8 x (-1)4 = (-3) x (-1) - 6 x 1 x (-1) + 8 x 1 = 3 + 6 + 8 = 17
c: Ta có: \(6x^2-\left(2x+5\right)\left(3x-2\right)\)
\(=6x^2-6x^2+4x-15x+10\)
=-11x+10
d: Ta có: \(2x\left(3x-1\right)-\left(x-3\right)\left(6x+2\right)\)
\(=6x^2-2x-6x^2-2x+18x+6\)
=14x+6
B = 1 + 32 + 34 + … + 32018
32.B = 32.( 1 + 32 + 34 + … + 32018)
9B = 32 + 34 + 36 + … + 32020
9B – B = (32 + 34 + 36 + … + 32020) – (1 + 32 + 34 + … + 32018)
8B = 32020 – 1
B = (32020 – 1) : 8.
Vậy B = (32020 – 1) : 8.
b: \(\left(x-1\right)\left(x+7\right)-x^2+3x\)
\(=x^2+6x-7-x^2+3x\)
=9x-7
a) \(A=2+2^2+2^3+...+2^{2017}\)
\(2A=2^2+2^3+2^4+...+2^{2018}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{2018}\right)-\left(2+2^2+2^3+...+2^{2017}\right)\)
\(A=2^{2018}-2\)
b) \(C=1+3^2+3^4+...+3^{2018}\)
\(3^2\cdot C=3^2+3^4+3^6+...+3^{2020}\)
\(9C-C=\left(3^2+3^4+3^6+...+3^{2020}\right)-\left(1+3^2+3^4+...+3^{2018}\right)\)
\(8C=3^{2020}-1\)
\(\Rightarrow C=\dfrac{3^{2020}-1}{8}\)
\(Toru\)
\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)=8x^3+y^3\)
=a3+2a2b+a2b+2ab2+ab2+b3
=(a3+2a2b+ab2)+(a2b+2ab2+b3)
=a(a2+2ab+b2)+b(a2+2ab+b2)
=(a+b)(a2+ab+ab+b2)
=(a+b)(a(a+b)+b(a+b))
=(a+b)(a+b)(a+b)=(a+b)3
=a3 + 2a2 b+a2b+2ab2+ab3+b3
=(a3+2a2b+ab2)+(a2b+2ab2+b3)
=a(a2+2ab+b2)+b(a2+2ab+b3)
=(a+b)(a(a+b)+b(a-b)
=(a-b)(a+b)(a-b)=(a+b)2