Chứng tỏ không thể tồn tại các số tự nhiên x, y,z sao cho ( x+y).(y+z).(z+x)+ 2018\(^{2019}\)=2019\(^{2018}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Nếu n = 2k ( k thuộc N ) thì : 7^n+2 = 49^n+2 = [B(3)+1]^n+2 = B(3)+1+2 = B(3)+3 chia hết cho 3
Nếu n=2k+1 ( k thuộc N ) thì : 7^n+2 = 7.49^n+2 = (7.49^n+14)-12 = 7.(49^n+2)-12 chia hết cho 3 ( vì 49^n+2 và 12 đều chia hết cho 3 )
=> (7^n+1).(7^n+2) chia hết cho 3 với mọi n thuộc N
Tk mk nha
b, Trong 3 số tự nhiên x,y,z luôn tìm được hai số cùng chẵn hoặc cùng lẻ. Ta có tổng của hai số này là chẵn, do đó (x + y)(y + z)(z + x) chia hết cho 2
=> (x + y)(y + z)(z + x) + 2016 chia hết cho 2 (vì 2016 chia hết cho 2)
Mà 20172018 không chia hết cho 2
Vậy không tồn tại các số tồn tại các số tự nhiên x,y,z thỏa mãn đề bài
Với \(x\ne y\ne z\ne0\).Ta có: Do VT luôn luôn là số lẻ mà VP luôn luôn là số chẵn(Vô Lý)
Với \(x=0\)\(\Rightarrow1+2019^y=2020^z\)
\(\Rightarrow y=1,z=1\)
Lần lượt thử các trường hợp voiứ y=0,z=0
\(\left|x-2y\right|+\left|4y-5z\right|+\left|z-3x\right|=2019\)
\(\Rightarrow\left|x-2y\right|+x-2y+\left|4y-5z\right|+4y-5z+\left|z-3x\right|+z-3x=2019+2y-4z-2x\)
Xét \(a< 0\) ta có:\(\left|a\right|+a=-a+a=0⋮2\)
Xét \(a=0\) ta có:\(\left|a\right|+a=0⋮2\)
Xét \(a>0\) ta có:\(\left|a\right|+a=a+a=2a⋮2\)
Vậy với mọi a thì \(\left|a\right|+a\) luôn chia hết cho 2
Áp dụng vào bài ta có:\(\left|x-2y\right|+x-2y+\left|4y-5z\right|+4y-5z+\left|z-3x\right|+z-3x⋮2\)
mà \(2019+2y-4z-2x\) không chia hết cho 2,vô lí
Vậy không tồn tại số nguyên x,y,z thỏa mãn