K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2021

Không mất tính tổng quát, giả sử p≧qp≧q. Phương trình đã cho tương đương: p(p+1)=(n−q)(n+q+1)p(p+1)=(n−q)(n+q+1).

Do pp là số nguyên tố nên xảy ra 2 trường hợp sau đây:
1.1. Với p∣n−q⇔n=pr+q(r∈N)p∣n−q⇔n=pr+q(r∈N). Suy ra: p+1=r(pr+2q+1)=2(q−2)r+(r−1)(pr+r+5)+p+5≧p+5p+1=r(pr+2q+1)=2(q−2)r+(r−1)(pr+r+5)+p+5≧p+5 (vô lí!)

2.2. Với n=pt−q−1⇔p+1=t(pt−2q−1)n=pt−q−1⇔p+1=t(pt−2q−1). Suy ra: t∣p+1⇔p=st−1⇔s=t(st−1)−2q−1t∣p+1⇔p=st−1⇔s=t(st−1)−2q−1 mà p≧qp≧q nên xét trường hợp t≧3t≧3 thì:

s≧t(st−1)−2(st−1)−1=3s−2+(t−3)(st+s−1)⇔s≦1s≧t(st−1)−2(st−1)−1=3s−2+(t−3)(st+s−1)⇔s≦1

và không may p=st−1≧t−1p=st−1≧t−1 mà t=p+1t=p+1 nên s=1,t=3,p=q=2,n=pt−q−1=3s=1,t=3,p=q=2,n=pt−q−1=3. Xét trường hợp t=1,2t=1,2 thì:

Với t=1t=1 thì q=−1q=−1 (loại!)

Với t=2t=2 thì 2q=3(s−1)⇔3∣q⇔q=32q=3(s−1)⇔3∣q⇔q=3 (qq prime) nên s=3⇒p=st−1=5⇒n=pt−q=6s=3⇒p=st−1=5⇒n=pt−q=6.

Vậy (p,q,n)=(2,2,3),(3,5,6),(5,3,6)

25 tháng 2 2021

lâ, là ai ạ

11 tháng 5 2019

\(P=\frac{n^2}{60-n}=\frac{60^2-\left(60^2-n^2\right)}{60-n}=\frac{3600-\left(60-n\right)\left(60+n\right)}{60-n}.\) \(P=\frac{3600}{60-n}-\left(60+n\right).\) 

Để P là số nguyên tố thì trước hết P phải là số nguyên. Khi n là số nguyên để P là số nguyên thì  (60 - n) phải là ước của 3600, P>0.

 suy ra n < 60  (Để P dương) như vậy n là ước của 60 \(n\in(1,2,3,4,5,6,10,12,15,30).\) 

Kiểm tra lần lượt, ta thấy n = 10 , n= 12 và n = 15 thỏa mãn. n = 10 , P  = 2   ;  n = 12,  P = 3  và  n = 15 , P = 5.

5 tháng 5 2021

@TRẦN ĐỨC VINH: Gần đúng r bn nhé.

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
17 tháng 12 2018

toán tuổi thơ 2 số 190

29 tháng 1 2022

 

\(\dfrac{1}{p}-\dfrac{1}{q}=\dfrac{9}{n}\) =>\(\dfrac{q-p}{pq}=\dfrac{9}{n}\) =>\(n=\dfrac{9pq}{q-p}\).

- Đặt pq=n , p-q=9

- Vì n là số nguyên nên: 9pq ⋮ (q-p)

*Gỉa sử p,q lẻ thì 9pq ⋮ 2 =>p⋮2 hoặc q⋮2 (vô lý).

*Gỉa sử p chẵn, q lẻ thì p⋮2 mà p là số nguyên tố nên p=2.

- p-q=9 =>2-q=9 =>q=-7 (không thỏa mãn).

*Gỉa sử q chẵn, p lẻ thì q⋮2 mà q là số nguyên tố nên q=2.

- p-q=9 =>p=11 (thỏa mãn).

- Vậy p=11 ; q=2.

31 tháng 8 2017
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1) b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c) =(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc) c)Đặt x-y=a;y-z=b;z-x=c a+b+c=x-y-z+z-x=o đưa về như bài b d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y) =x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
2 tháng 11 2018

vcl ngu như chó còn sủa cút

13 tháng 12 2021

giải thích rõ hộ em với ạ em vnx chưa hiểu ạ;-;