K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2021

Nhờ các mod xóa giùm bài kia. Gõ $\LaTeX$ bị sai.

Sửa đề. Chứng minh CD // OM.

Ta có:

$$\widehat{COM}=\dfrac{\widehat{BOC}}{2} =\dfrac{180^o-\widehat{DOC}}{2}=\widehat{OCD}$$

(vì $\Delta OCD$ cân tại $O$ do $OC=OD=R.$)

Nên CD//OM (hai góc so le trong bằng nhau)

18 tháng 1 2021

Hình vẽ:

Cho đường tròn (O;R) và một điểm M nằm ngoài đường tròn. Từ M kẻ các tiếp tuyến MB,MC tới (O) (B,C là tiếp điểm). Gọi H là giao điểm của MO với BC. Vẽ đường kính BA.                                                                                                     a) Cm các điểm M,B,O,C cùng nằm trên 1 đg tròn                                               b) Cm: CH^2=OH.HM                                                                      c)...
Đọc tiếp

Cho đường tròn (O;R) và một điểm M nằm ngoài đường tròn. Từ M kẻ các tiếp tuyến MB,MC tới (O) (B,C là tiếp điểm). Gọi H là giao điểm của MO với BC. Vẽ đường kính BA.                                                                                                     a) Cm các điểm M,B,O,C cùng nằm trên 1 đg tròn                                               b) Cm: CH^2=OH.HM                                                                      c) Gọi F là trung điểm của MH,AH cắt (O) tại giao điểm thứ hai là Q.Cm tam giác MBH đồng dạng tam giác BAC và B,Q,F thẳng hàng                                                          

2
NV
18 tháng 1

a. Câu này đơn giản em tự giải.

b.

Ta có: \(\left\{{}\begin{matrix}OB=OC=R\\MB=MC\left(\text{t/c hai tiếp tuyến cắt nhau}\right)\end{matrix}\right.\)

\(\Rightarrow OM\) là trung trực của BC

\(\Rightarrow OM\perp BC\) tại H đồng thời H là trung điểm BC hay \(HB=HC\)

\(OC\perp MC\) (MC là tiếp tuyến tại C) \(\Rightarrow\Delta OMC\) vuông tại C

Áp dụng hệ thức lượng trong tam giác vuông OMC với đường cao CH:

\(CH^2=OH.MH\)

c.

C nằm trên đường tròn và AB là đường kính \(\Rightarrow\widehat{ACB}\) là góc nt chắn nửa đường tròn

\(\Rightarrow\widehat{ACB}=90^0\)

Xét hai tam giác MBH và BAC có:

\(\left\{{}\begin{matrix}\widehat{MHB}=\widehat{ACB}=90^0\\\widehat{MBH}=\widehat{BAC}\left(\text{cùng chắn BC}\right)\end{matrix}\right.\)  \(\Rightarrow\Delta MBH\sim\Delta BAC\left(g.g\right)\)

\(\Rightarrow\dfrac{BH}{AC}=\dfrac{MH}{BC}\Rightarrow\dfrac{BH}{AC}=\dfrac{2HF}{2CH}\) (do F là trung điểm MH và H là trung điểm BC)

\(\Rightarrow\dfrac{BH}{AC}=\dfrac{HF}{CH}\)

Xét hai tam giác BHF và ACH có:

\(\left\{{}\begin{matrix}\dfrac{BH}{AC}=\dfrac{HF}{CH}\left(cmt\right)\\\widehat{BHF}=\widehat{ACH}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta BHF\sim\Delta ACH\left(c.g.c\right)\)

\(\Rightarrow\widehat{HBF}=\widehat{CAH}\)

Mà \(\widehat{CAH}=\widehat{CBQ}\) (cùng chắn CQ)

\(\Rightarrow\widehat{HBF}=\widehat{CBQ}\) hay \(\widehat{HBF}=\widehat{HBQ}\)

\(\Rightarrow B,Q,F\) thẳng hàng

NV
18 tháng 1

loading...

5 tháng 5 2022

O M A B C

Xét đường tròn tâm O ta có :

góc MAB = góc MCA = 1/2 sđ cung AB

Xét tam giác MAB và tam giác MCA có :

góc MAB = góc MCA 

góc AMC Chung 

=> \(\Delta MAB\sim\Delta MCA\)

=.> \(\dfrac{MA}{MC}=\dfrac{MB}{MA}\)

=> MA2=MC.MB

<=> 62=12.MB

=>MB =3cm 

vậy MB = 3 cm

a) Xét tứ giác MAOB có

\(\widehat{OAM}\) và \(\widehat{OBM}\) là hai góc đối

\(\widehat{OAM}+\widehat{OBM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: MAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Suy ra: M,A,O,B cùng thuộc một đường tròn(đpcm)

30 tháng 4 2023

Em với

30 tháng 4 2023

Làm giúp em phần a-b được thì c luôn ạ

Xét ΔMAD và ΔMCA có

góc MAD=góc MCA

góc AMD chung

=>ΔMAD đồng dạng với ΔMCA

=>MA/MC=MD/MA

=>MA^2=MC*MD

a: Xét tứ giác MBOC có \(\widehat{MBO}+\widehat{MCO}=90^0+90^0=180^0\)

=>MBOC là tứ giác nội tiếp

=>M,B,O,C cùng thuộc một đường tròn

b: Sửa đề: \(CH\cdot HB=OH\cdot HM\)

Xét (O) có

MB,MC là các tiếp tuyến

Do đó: MB=MC

=>M nằm trên đường trung trực của BC(1)

ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra MO là đường trung trực của BC

=>MO\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔOBM vuông tại B có BH là đường cao

nên \(OH\cdot HM=HB^2\)

=>\(OH\cdot HM=HB\cdot HC\)

27 tháng 12 2021

a: Xét tứ giác MBOC có

\(\widehat{MBO}+\widehat{MCO}=180^0\)

Do đó: MBOC là tứ giác nội tiếp