Cho đg tròn (O;R) và (O';R') cắt nhau tại A,B. Đường kính AP của (O) cắt (o') tại E. Dường kính AQ của (o') cắt (o) tại F. M là giao điểm của PF vàn QE.a)cm; M A B thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lý Py-ta-go, ta tính được AB = 4(cm)
(câu a tự trình bày nhé)
b) Gọi H= OA _|_ BC . khi đó H là trung điểm BC
=> HB = HC
Xét 2 tam giác vuông AHB và AHC:
AH chung; HB = HC (cmt)
=> tam giác AHB = tam giác AHC (2 cạnh góc vuông)
=> ABH^ = ACH^
Mặt khác, OBC^ = OCB^ (tam giác BOC cân tại O, OB=R=OC)
Mà OBC^ + ABH^ = 90o (Ax là tiếp tuyến)
=> OCB^ + ACH^ = 90o => ACO^ = 90o => AC là tiếp tuyến (O)
c) Xét tam giác BCD:
CD là đường kính (gt) => O là trung điểm CD
Mà H là trung điểm BC (cmt)
=> OH là đường trung bình của tam giác BCD
=> OH // BD hay OA // BD
\(\dfrac{r}{R}=\dfrac{\dfrac{S}{p}}{\dfrac{abc}{4S}}=\dfrac{4S^2}{abc.p}=\dfrac{4\left(p-a\right)\left(p-b\right)\left(p-c\right).p}{abc.p}\\ =\dfrac{\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)}{2.abc}\left(...\right)\)
mà
\(\sqrt{b+c-a}.\sqrt{a+c-b}\le\dfrac{b+c-a+a+c-b}{2}=c\)
tương tự .........
\(\Rightarrow\left(...\right)\le\dfrac{1}{2}\)