1.Cho tam giác ABC có AB=12cm, AC=18cm đường phân giác AD, điểm I thuộc AD sao cho AI=2ID, BI cắt AC tại E
a) Tính tỉ số AE trên EC
b) Tính độ dài AE và EC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Áp dụng tính chất đường phân giác của tam giác ta có:
\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{18}=\frac{2}{3}\)
\(\Rightarrow\frac{BD}{2}=\frac{DC}{3}=\frac{BD+DC}{2+3}=\frac{BC}{5}\Rightarrow\frac{BD}{BC}=\frac{2}{5}\)
Kẻ \(DK//BE\left(K\in AC\right)\text{ ta có:}\)
\(\frac{AE}{EK}=\frac{AI}{ID}=2;\frac{EK}{EC}=\frac{BD}{BC}=\frac{2}{5}\)
Do đó:\(\frac{AE}{EK}\cdot\frac{EK}{EC}=\frac{AE}{EC}=\frac{2}{5}.2=\frac{4}{5}\)
b)\(\text{Ta có:}\)
\(\frac{AE}{EC}=\frac{4}{5}\Rightarrow\frac{AE}{4}=\frac{EC}{5}=\frac{AE+EC}{4+5}=\frac{AC}{9}=\frac{18}{9}=2\)
\(\Rightarrow AE=8cm,EC=10cm\)
bn ơi bài 1 ý a) chỉ có thể tính tỉ lệ thôi ko tính đc ra số hẳn đâu
a) Xét ΔABC có
AD là đường phân giác ứng với cạnh BC(gt)
nên BDDC=ABACBDDC=ABAC(Tính chất đường phân giác của tam giác)
⇔BDDC=23⇔BDDC=23
⇔BD2=CD3⇔BD2=CD3
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
BD2=CD3=BD+CD2+3=BC5BD2=CD3=BD+CD2+3=BC5
⇔BDBC=25⇔BDBC=25
Kẻ DK//BE(K∈EC)
Xét ΔADK có
I∈AD(gt)
E∈AK(gt)
IE//DK(gt)
Do đó: AEEK=AIIDAEEK=AIID(Định lí Ta lét)
hay AEEK=2AEEK=2
Xét ΔBEC có
D∈BC(gt)
K∈EC(gt)
DK//BE(gt)
Do đó: EKEC=BDBCEKEC=BDBC(Hệ quả của Định lí Ta lét)
hay EKEC=25EKEC=25
Ta có: AEEK⋅EKEC=AEECAEEK⋅EKEC=AEEC
⇔AEEC=2⋅25=45⇔AEEC=2⋅25=45
b) Ta có: AEEC=45AEEC=45(cmt)
nên AE4=EC5AE4=EC5
mà AE+EC=AC(E nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
AE4=EC5=AE+EC4+5=189=2AE4=EC5=AE+EC4+5=189=2
Do đó:
⎧⎪ ⎪⎨⎪ ⎪⎩AE4=2EC5=2⇔{AE=2⋅4=8(cm)EC=2⋅5=10(cm){AE4=2EC5=2⇔{AE=2⋅4=8(cm)EC=2⋅5=10(cm)
Vậy: AE=8cm; EC=10cm
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=5^2+12^2=169\)
=>\(BC=\sqrt{169}=13\left(cm\right)\)
Xét ΔBAC có BE là phân giác
nên \(\dfrac{AE}{AB}=\dfrac{CE}{CB}\)
=>\(\dfrac{AE}{5}=\dfrac{CE}{13}\)
mà AE+CE=AC=12
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AE}{5}=\dfrac{CE}{13}=\dfrac{AE+CE}{5+13}=\dfrac{12}{18}=\dfrac{2}{3}\)
=>\(AE=5\cdot\dfrac{2}{3}=\dfrac{10}{3}\left(cm\right);CE=13\cdot\dfrac{2}{3}=\dfrac{26}{3}\left(cm\right)\)
b: Kẻ IH\(\perp\)AC
=>IH là khoảng cách từ I xuống AC
IH\(\perp\)AC
AB\(\perp\)AC
Do đó: IH//AB
Xét ΔAEB có AI là phân giác
nên \(\dfrac{EI}{IB}=\dfrac{AE}{AB}=\dfrac{10}{3}:5=\dfrac{2}{3}\)
=>\(\dfrac{EI}{EB}=\dfrac{2}{5}\)
Xét ΔEAB có HI//AB
nên \(\dfrac{HI}{AB}=\dfrac{EI}{EB}\)
=>\(\dfrac{HI}{5}=\dfrac{2}{5}\)
=>HI=2(cm)
c: Xét ΔABC có AD là phân giác
nên \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos45\)
=>\(AD=\dfrac{2\cdot5\cdot12}{5+12}\cdot\dfrac{\sqrt{2}}{2}\simeq4,99\left(cm\right)\)
Tự vẽ hình.
a) Xét tam giác OAB có AB // CD
⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)
=> OC = 4cm, DC = 6cm
Vậy OC = 4cm và DC = 6cm
b) Xét tam giác FAB có DC // AB
⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )
c) Theo (1), ta đã có:
OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)
Vì MN // AB mà AB // DC => MN // DC
Xét tam giác ADC có MO// DC
⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)
CMTT : ONDC=OBDBONDC=OBDB (4)
Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )
-Qua D kẻ đường thẳng song song BI cắt AC tại F.
-Xét △ABC: AD là tia p/g của \(\widehat{BAC}\) (gt)
\(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}\) (định lí đường phân giác trong tam giác)
\(\Rightarrow\dfrac{BD}{CD}=\dfrac{10}{35}=\dfrac{2}{7}\)
-Có: \(AE=\dfrac{3}{4}AD\) (gt) ; \(AE+ED=AD\)
\(\Rightarrow\dfrac{3}{4}AD+ED=AD\)
\(\Rightarrow ED=\dfrac{1}{4}AD\)
\(\Rightarrow\dfrac{AE}{ED}=\dfrac{\dfrac{3}{4}AD}{\dfrac{1}{4}AD}=3\)
-Xét △AIF: EI//DF.
\(\Rightarrow\dfrac{AI}{IF}=\dfrac{AE}{ED}=3\) (định lí Ta-let) (1) \(\Rightarrow IF=\dfrac{1}{3}AI\)
-Xét △IBC: DF//BI.
\(\Rightarrow\dfrac{IF}{CF}=\dfrac{BD}{CD}=\dfrac{2}{7}\) (định lí Ta-let) (2)
-Từ (1), (2) suy ra:
\(\dfrac{AI}{IF}.\dfrac{IF}{CF}=3.\dfrac{2}{7}=\dfrac{6}{7}\)
\(\Rightarrow\dfrac{AI}{CF}=\dfrac{6}{7}\)
\(\Rightarrow CF=\dfrac{7}{6}AI\)
*\(AI+IF+CF=AC\)
\(\Rightarrow AI+\dfrac{7}{6}AI+\dfrac{1}{3}AI=35\)
\(\Rightarrow\dfrac{5}{2}AI=35\)
\(\Rightarrow AI=14\left(cm\right)\)
a) Xét ΔABC có
AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{DC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{BD}{DC}=\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{BD}{2}=\dfrac{CD}{3}\)
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{2}=\dfrac{CD}{3}=\dfrac{BD+CD}{2+3}=\dfrac{BC}{5}\)
\(\Leftrightarrow\dfrac{BD}{BC}=\dfrac{2}{5}\)
Kẻ DK//BE(K∈EC)
Xét ΔADK có
I∈AD(gt)
E∈AK(gt)
IE//DK(gt)
Do đó: \(\dfrac{AE}{EK}=\dfrac{AI}{ID}\)(Định lí Ta lét)
hay \(\dfrac{AE}{EK}=2\)
Xét ΔBEC có
D∈BC(gt)
K∈EC(gt)
DK//BE(gt)
Do đó: \(\dfrac{EK}{EC}=\dfrac{BD}{BC}\)(Hệ quả của Định lí Ta lét)
hay \(\dfrac{EK}{EC}=\dfrac{2}{5}\)
Ta có: \(\dfrac{AE}{EK}\cdot\dfrac{EK}{EC}=\dfrac{AE}{EC}\)
\(\Leftrightarrow\dfrac{AE}{EC}=2\cdot\dfrac{2}{5}=\dfrac{4}{5}\)
b) Ta có: \(\dfrac{AE}{EC}=\dfrac{4}{5}\)(cmt)
nên \(\dfrac{AE}{4}=\dfrac{EC}{5}\)
mà AE+EC=AC(E nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AE}{4}=\dfrac{EC}{5}=\dfrac{AE+EC}{4+5}=\dfrac{18}{9}=2\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AE}{4}=2\\\dfrac{EC}{5}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AE=2\cdot4=8\left(cm\right)\\EC=2\cdot5=10\left(cm\right)\end{matrix}\right.\)
Vậy: AE=8cm; EC=10cm