Tổng tất cả các chữ số của 1 số tự nhiên có 3 chữ số là 21. Chữ số hàng đơn vị lớn hơn chữ số hàng chục. Nếu đổi chữ số hàng đơn vị và chữ số hàng trăm ta sẽ nhận được một số tự nhiên mới lớn hơn số ban đầu là 198. Tìm số ban đầu.
(mong bạn làm nhanh giúp mình nhé, mình đang gấp)
Số tự nhiên đó có dạng \(\overline{abc}\left(1\le a\le9;0\le b,c\le9;a,b,c\in\mathbb{N}\right)\)
Theo đề bài ta có: \(a+b+c=21;c>b;\overline{cba}-\overline{abc}=198\left(1\right)\)
Hay \(\left\{{}\begin{matrix}a+b+c=21\\99\left(c-a\right)=198\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b+c=21\\c-a=2\end{matrix}\right.\Rightarrow\left(c-2\right)+b+c=21\)
\(\Leftrightarrow2c+b=23.\) Mà ta có: \(23=2c+b< 3c\Rightarrow c>\dfrac{23}{3}\Rightarrow9\ge c\ge8\) (do $c\in \N$)
Với $c=9$ thì $b=5$ suy ra $a=7.$ Vậy số đó là $759.$
Với $c=8$ thì $b=7$ suy ra $a=6.$ Vậy số đó là $678$
Lâu không giải toán $6$ nên mình không chắc về cách trình bày đâu bạn nhé.
mơn bạn nhé :)))