cho x,y,z dương thỏa mãn x+y+z=1. CMR:
\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2+2024}=\sqrt{x^2+xy+yz+zx}=\sqrt{\left(x+y\right)\left(z+x\right)}\ge\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}=\sqrt{xy}+\sqrt{xz}\)
Tương tự: \(\sqrt{y^2+2024}\ge\sqrt{xy}+\sqrt{yz}\)
\(\sqrt{z^2+2024}\ge\sqrt{xz}+\sqrt{yz}\)
Cộng vế:
\(P\ge\dfrac{2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}=2\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{2024}{3}\)
Bình phương vế trái : \(\left(x+y+z\right)+\left(xy+yz+zx\right)+2\sqrt{x+yz}.\sqrt{y+zx}+2\sqrt{y+zx}.\sqrt{z+xy}+2\sqrt{z+xy}.\sqrt{x+yz}\)
Bình phương vế phải : \(\left(1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2=\left(xy+yz+zx+1\right)+2\sqrt{xy}+2\sqrt{yz}+2\sqrt{zx}+y\sqrt{xz}+z\sqrt{xy}+x\sqrt{yz}\)Vì a+b+c = 1 nên suy ra :
\(\sqrt{x+yz}.\sqrt{y+zx}+\sqrt{y+zx}.\sqrt{z+xy}+\sqrt{z+xy}.\sqrt{x+yz}\ge\)
\(\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}+x\sqrt{yz}+z\sqrt{xy}+y\sqrt{xz}\) (*)
Mặt khác, áp dụng bđt Bunhiacopxki , ta có :
\(\sqrt{x+yz}.\sqrt{y+zx}\ge\sqrt{x.y}+\sqrt{yz.zx}=\sqrt{xy}+z\sqrt{xy}\)
Tương tự : \(\sqrt{y+zx}.\sqrt{z+xy}\ge\sqrt{yz}+x\sqrt{yz}\) ; \(\sqrt{x+yz}.\sqrt{z+xy}\ge\sqrt{xz}+y\sqrt{xz}\)
Cộng các bđt trên theo vế được (*) đúng
Vậy bđt ban đầu được chứng minh.
ta chứng minh \(\sqrt{x+yz}\ge x+\sqrt{yz}\left(1\right)\)
\(\Leftrightarrow x+yz\ge x^2+2x\sqrt{yz}+yz\Leftrightarrow1\ge x+2\sqrt{yz}\)
\(\Leftrightarrow x+y+z\ge x+2\sqrt{yz}\Leftrightarrow y+z\ge2\sqrt{yz}\)
\(\Leftrightarrow\left(\sqrt{y}-\sqrt{z}\right)^2\ge0\)do đó (1) đúng
tương tự ta có \(\hept{\begin{cases}\sqrt{y}+\sqrt{xz}\ge y+\sqrt{xz}\left(2\right)\\\sqrt{z}+\sqrt{xy}\ge z+\sqrt{xy}\left(3\right)\end{cases}}\)
từ (1); (2) và (3) ta suy ra
\(\sqrt{x+yz}+\sqrt{y+xz}+\sqrt{z+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
dấu đẳng thức xảy ra khi x=y=z=\(\frac{1}{3}\)
\(x+\sqrt{3x+yz}=x+\sqrt{x\left(x+y+z\right)+yz}=x+\sqrt{\left(x+y\right)\left(z+x\right)}\ge x+\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}\)
\(=x+\sqrt{xz}+\sqrt{xy}=\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}\le\dfrac{x}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Tương tự:
\(\dfrac{y}{y+\sqrt{3y+zx}}\le\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\) ; \(\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Cộng vế với vế ta có đpcm
Ta cần chứng minh:\(\dfrac{1}{\sqrt{x+y+xy}}+\dfrac{1}{\sqrt{y+z+yz}}+\dfrac{1}{\sqrt{z+x+zx}}\ge\sqrt{3}\)
Áp dụng bất đẳng thức Bunhiacopxki, ta được:
\(\dfrac{1}{\sqrt{x+y+xy}}+\dfrac{1}{\sqrt{y+z+yz}}+\dfrac{1}{\sqrt{z+x+zx}}\ge\dfrac{9}{\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}}\)
Mặt khác, ta có:
\(\left(\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\right)^2\le3\left(\left(x+y+xy\right)+\left(y+z+yz\right)+\left(z+x+zx\right)\right)\)
\(\Leftrightarrow\left(\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\right)^2\le3\left(6+xy+yz+zx\right)\)Lại có:
\(xy+yz+zx\le\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{9}{3}=3\)
\(\Rightarrow\left(\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\right)^2\le3\left(6+3\right)=27\)
\(\Rightarrow\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\le3\sqrt{3}\)
\(\Rightarrow\dfrac{9}{\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}}\ge\dfrac{9}{3\sqrt{3}}=\sqrt{3}\)
Do đó \(\dfrac{1}{\sqrt{x+y+xy}}+\dfrac{1}{\sqrt{y+z+yz}}+\dfrac{1}{\sqrt{z+x+zx}}\ge\sqrt{3}\)
Dấu bằng xảy ra \(\Leftrightarrow x=y=z=1\).
Ta có:\(\sqrt{\dfrac{yz}{x^2+2017}}=\sqrt{\dfrac{yz}{x^2+xy+yz+zx}}=\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}\)
\(=\sqrt{\dfrac{y}{x+y}\cdot\dfrac{z}{x+z}}\le\dfrac{\dfrac{y}{x+y}+\dfrac{z}{x+z}}{2}\)
Tương tự ta có:\(\sqrt{\dfrac{zx}{y^2+2017}}\le\dfrac{\dfrac{x}{x+y}+\dfrac{z}{y+z}}{2}\)
\(\sqrt{\dfrac{xy}{z^2+2017}}\le\dfrac{\dfrac{y}{z+y}+\dfrac{x}{x+z}}{2}\)
Cộng vế với vế ta có:
\(\sqrt{\dfrac{yz}{x^2+2017}}+\sqrt{\dfrac{zx}{y^2+2017}}+\sqrt{\dfrac{xy}{z^2+2017}}\)
\(\le\dfrac{\dfrac{y}{x+y}+\dfrac{z}{x+z}+\dfrac{z}{z+y}+\dfrac{x}{x+y}+\dfrac{y}{z+y}+\dfrac{x}{x+z}}{2}\)
\(=\dfrac{\dfrac{x+y}{x+y}+\dfrac{y+z}{y+z}+\dfrac{z+x}{z+x}}{2}=\dfrac{1+1+1}{2}=\dfrac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{\sqrt{2017}}{\sqrt{3}}\)
Đặt \(A=\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\)
Ta có:
\(x^2+xy+yz+zx=x+xyz=x\left(x+yz\right)\)
\(\Rightarrow\frac{x\left(x+yz\right)}{x}=\frac{x^2+xy+yz+zx}{x}\)
\(\Leftrightarrow x+yz=\frac{x^2+xy+yz+zx}{x}=\frac{\left(x^2+xy\right)+\left(yz+zx\right)}{x}=\frac{\left(x+z\right)\left(x+y\right)}{x}\)
\(\Rightarrow\sqrt{x+yz}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\)
Vì x, y, z >0 nên áp dụng bất đẳng thức Bunhiacopxki cho 2 số dương, ta được:
\(\left(x+y\right)\left(x+z\right)\ge\left(\sqrt{x^2}.+\sqrt{yz}\right)^2\)
\(\Rightarrow\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\)
\(\Rightarrow\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\ge\frac{x+\sqrt{yz}}{\sqrt{x}}\)
Do đó \(\sqrt{x+yz}\ge\frac{x+\sqrt{yz}}{\sqrt{x}}\left(1\right)\)
Chứng minh tương tự, ta được:
\(\sqrt{y+xz}\ge\frac{y+\sqrt{xz}}{\sqrt{y}}\left(2\right)\)
Chứng minh tương tự, ta được:
\(\sqrt{z+xy}\ge\frac{z+\sqrt{xy}}{\sqrt{z}}\left(3\right)\)
Từ (1), (2) và (3), ta được:
\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\)\(\ge\frac{x+\sqrt{yz}}{\sqrt{x}}+\frac{y+\sqrt{zx}}{\sqrt{y}}+\frac{z+\sqrt{xy}}{\sqrt{z}}\)
\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{\frac{yz}{x}}+\sqrt{y}+\sqrt{\frac{xz}{y}}+\sqrt{z}+\sqrt{\frac{xy}{z}}\)
\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{yz+zx+xy}{\sqrt{xyz}}\)
\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xyz}{\sqrt{xyz}}\)(vì \(xy+yz+zx=xyz\))
\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}\)(điều phải chứng minh).
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}x=y=z>0\\xy+yz+zx=xyz\end{cases}}\Leftrightarrow x=y=z=3\)
Vậy với x, y, z là các số thực dương thỏa mãn xy + yz + zx =xyz thì:
\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}\).
\(\)
Có \(\sqrt{\dfrac{xy}{x+y+2z}}=\dfrac{\sqrt{xy}}{\sqrt{x+y+2z}}\)\(=\dfrac{2\sqrt{xy}}{\sqrt{\left(1+1+2\right)\left(x+y+2z\right)}}\)\(\le\dfrac{2\sqrt{xy}}{\sqrt{x}+\sqrt{y}+2\sqrt{z}}\) (theo bunhia dưới mẫu)\(\le\dfrac{2\sqrt{xy}}{4}\left(\dfrac{1}{\sqrt{x}+\sqrt{z}}+\dfrac{1}{\sqrt{y}+\sqrt{z}}\right)\)
\(\Leftrightarrow\sqrt{\dfrac{xy}{x+y+2z}}\le\dfrac{1}{2}\left(\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{z}}+\dfrac{\sqrt{xy}}{\sqrt{y}+\sqrt{z}}\right)\)
Tương tự cũng có:
\(\sqrt{\dfrac{yz}{y+z+2x}}\le\dfrac{1}{2}\left(\dfrac{\sqrt{yz}}{\sqrt{y}+\sqrt{x}}+\dfrac{\sqrt{yz}}{\sqrt{z}+\sqrt{x}}\right)\)
\(\sqrt{\dfrac{zx}{z+x+2y}}\le\dfrac{1}{2}\left(\dfrac{\sqrt{zx}}{\sqrt{z}+\sqrt{y}}+\dfrac{\sqrt{zx}}{\sqrt{x}+\sqrt{y}}\right)\)
Cộng vế với vế ta được:
\(VT\le\dfrac{1}{2}\left(\dfrac{\sqrt{xy}+\sqrt{yz}}{\sqrt{x}+\sqrt{z}}+\dfrac{\sqrt{xy}+\sqrt{zx}}{\sqrt{y}+\sqrt{z}}+\dfrac{\sqrt{yz}+\sqrt{zx}}{\sqrt{x}+\sqrt{y}}\right)\)
\(\Leftrightarrow VT\le\dfrac{1}{2}\left(\sqrt{y}+\sqrt{x}+\sqrt{z}\right)=\dfrac{1}{2}\)
Dấu = xảy ra khi \(x=y=z=\dfrac{1}{9}\)
Bất đẳng thức cần chứng minh tương đương:
\(\sqrt{x\left(x+y+z\right)+yz}+\sqrt{y\left(x+y+z\right)+zx}+\sqrt{z\left(x+y+z\right)+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow\sqrt{\left(x+y\right)\left(x+z\right)}+\sqrt{\left(y+z\right)\left(y+x\right)}+\sqrt{\left(z+x\right)\left(z+y\right)}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\). (1)
Theo bđt Bunhiakowski:
\(\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\).
Tương tự: \(\sqrt{\left(y+z\right)\left(y+x\right)}\ge y+\sqrt{zx}\); \(\sqrt{\left(z+x\right)\left(z+y\right)}\ge z+\sqrt{xy}\).
Cộng vế với vế và kết hợp với gt x + y + z = 1 ta có (1) đúng.
Vậy ta có đpcm.
\(\sqrt{x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\)
Tương tự:
\(\sqrt{y+zx}\ge y+\sqrt{zx}\) ; \(\sqrt{z+xy}\ge z+\sqrt{xy}\)
Cộng vế với vế:
\(VT\ge\left(x+y+z\right)+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=...\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)