K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2021

Program Hoc24;

Var i: integer;

s: longint;

begin

s:=0;

for i:=1 to 100 do if  i mod 2=1 then s:=s+i;

writeln('S=',s);

readln

end.

uses crt;

var s,i,a:integer;

begin

clrscr;

s:=0;

a:=1;

for i:=1 to 50 do

  begin

s:=s+a;

a:=a+2;

end;

writeln('S=',s);

readln;

end.

15 tháng 1 2018

Bn vào Câu hỏi tương tự nhé !!!~

Bn sẽ tìm đc thôi !!~

15 tháng 1 2018

Tìm k thấy bạn ah =))

22 tháng 7 2023

1/

\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)

\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)

Đặt 

\(A=1.2+2.3+3.4+...+99.100\)

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)

\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)

\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)

Đặt

\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)

\(\Rightarrow N=A-B\)

2/

Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được

\(A=1^2+2^2+3^2+...+100^2\) 

Tính như câu 1

3/ Làm như bài 4

4/

\(S=1^2+3^2+5^2+...+99^2=\)

\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)

\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)

Đặt

\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\) 

Đặt

\(A=1.3+3.5+5.7+...+99.101\)

\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)

\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)

\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)

\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)

\(\Rightarrow S=A-2B\)

GH
22 tháng 7 2023

Bài 1:

\(N=1^2+2^2+3^3+...+99^2\)

\(N=1.1+2.2+3.3+...+99.99\)

\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)

\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)

\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)

Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)

+) Tính \(A=1.2+2.3+3.4+...+99.100\)

Ta có:

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)

\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)

\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(3A=99.100.101\)

\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)

+) Tính \(B=1+2+3+...+99\)

\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)

\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)

\(\Rightarrow N=A-B=333300-4950=328350\)

\(\Rightarrow N=328350\)

 

 

21 tháng 2 2022

`S=1+2+3+4+5+...+99+100`

`S=((100+1)[(100-1):1+1])/(2)=5050`

21 tháng 2 2022

Số số hạng là:

( 100 - 1 ) : 1 + 1 = 100 ( số )

Tổng của S trên là:

( 100 + 1 ) x 100 : 2 = 5050

Đáp số: 5050

AH
Akai Haruma
Giáo viên
13 tháng 12 2023

Lời giải:

$S=(-1)+(-3)+(-5)+....+(-99)$

$-S=1+3+5+...+99$

Số số hạng: $(99-1):2+1=50$ 

$-S=50(99+1):2=2500$

$\Rightarrow S=-2500$

26 tháng 10 2017

a)số các số hạng trong S là:

(98-2):2+1=49(số)

Tổng S là:

(2+98).45:2=2250

b) số các số hạng là:

(99-1):2+1=50(số)

tổng S là:

(99+1).50:2=2500

26 tháng 10 2017

S:2+4+6+8+...+98=2450

S:1+3+5+7+...+99=2500

28 tháng 12 2015

-50 mà bạn ơi bài nay lớp 7 hả

11 tháng 7 2021

ngu thế

18 tháng 10 2015

\(S=\left(3+3^{3+3^3}\right)+.....+\left(3^{97}+3^{98}+3^{99}\right)\)

\(S=39.1+39.3^3+....+39.3^{96}=>S=39\left(1+3^3+3^6+.....+3^{96}\right)\)

Vậy S chia hết cho 39

31 tháng 7 2016

\(S=1^2+2^2+3^2+...+99^2\)
\(=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)\)
\(=\left(1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\right)-\left(1+2+3+...+99\right)\)
\(=\frac{99\cdot100\cdot101}{3}-\frac{99\cdot\left(99+1\right)}{2}\)
\(=333300-4950\)
\(=328350\)

31 tháng 7 2016

\(M=1\cdot3+3\cdot5+5\cdot7+...+97\cdot99\)
\(=3+\frac{3\cdot5\cdot\left(7-1\right)+5\cdot7\cdot\left(9-3\right)+...+97\cdot99\cdot\left(101-95\right)}{6}\)
\(=3+\frac{3\cdot5\cdot7-1\cdot3\cdot5+5\cdot7\cdot9-3\cdot5\cdot7+...+97\cdot99\cdot101-95\cdot97\cdot99}{6}\)
\(=3+\frac{-\left(1\cdot3\cdot5\right)}{6}+\frac{3\cdot5\cdot7+5\cdot7\cdot9-3\cdot5\cdot7+...+97\cdot99\cdot101-95\cdot97\cdot99}{6}\)
\(=3+-\frac{15}{6}+\frac{97\cdot99\cdot101}{6}\)
\(=3+-2,5+161650,5\)
\(=161651\)

2 tháng 8 2016

S= 1/1.2 + 1/2.3 + 1/3.4+...+ 1/99.100

  =1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

  =1-1/100

  =99/100

2 tháng 8 2016

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(S=1-\frac{1}{100}\)

\(S=\frac{99}{100}\)