K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2021

giúp tui plssssssss

 

28 tháng 11 2021

D E F I M K -

a) Vì M trung điểm DF => MD=MF

         K đối xứng với M qua I => KM=MI

=> DKFI là hbh ( 2 đường chéo cắt nhau tại trung điểm mỗi đg)

Mà có ^I=90o ( DI là đường cao)

=>    DKFI là hcn ( hbh có 1 góc _|_)

b) Vì DKFI là hcn=> ^D=^K=^I=^F=90 độ 

=> IK_|_DF => DKFI là hình vuông  (theo dấu hiệu nhận bt)

Để \(\Delta\)DEF cần thêm đk là hình vuông => DK_|_KF

=> DE=DF ( \(\Delta\)DEF trở thành \(\Delta\) cân )

Mà lại có DI là đường cao 

=> \(\Delta\) DEF là \(\Delta\) vuông cân

 Vậy \(\Delta\)DEF cần điều kiện DK_|_KF 

22 tháng 10 2021

a: Xét tứ giác DKFH có 

I là trung điểm của DF

I là trung điểm của KH

Do đó: DKFH là hình bình hành

mà \(\widehat{DKF}=90^0\)

nên DKFH là hình chữ nhật

25 tháng 12 2022

Nhanh hộ mik với

 

 

Các bạn giúp mình giải các bài toán này được không, cảm ơn nhìu.Bài 1:Cho hình thang ABCD ( AB//CD) có góc A - góc D=30 độ. Tính các góc còn lại của hình thang cân đó.Bài 2 : Cho hình thoi ABCD có hai đường chéo lần lượt là 12 cm và 16 cm. Tính chu vi của hình thoi đó.Bài 3 : Cho tam giác DEF cân tại D( DE>EF), đường cao DH . Gọi I là trung điểm của DE. K là điểm đối xứng của H qua Ia) Chứng minh tứ...
Đọc tiếp

Các bạn giúp mình giải các bài toán này được không, cảm ơn nhìu.

Bài 1:Cho hình thang ABCD ( AB//CD) có góc A - góc D=30 độ. Tính các góc còn lại của hình thang cân đó.

Bài 2 : Cho hình thoi ABCD có hai đường chéo lần lượt là 12 cm và 16 cm. Tính chu vi của hình thoi đó.

Bài 3 : Cho tam giác DEF cân tại D( DE>EF), đường cao DH . Gọi I là trung điểm của DE. K là điểm đối xứng của H qua I

a) Chứng minh tứ giác DKEH là hình chữ nhật.

b) Nếu tam giác DEF vuông cân tại D thì tứ giác DKEH là hình gì ? Vì sao ? Vẽ hình minh họa.

c) Vẽ CA vuông DF ( A thuộc DF). Chứng minh tam giác AHK là tam giác vuông.

Bài 4 : Cho tam giác DEF, gọi M,N lần lượt là trung điểm của DE, DF. Qua F vẽ đường thẳng song song với DE cắt đường thẳng MN tại K

a) Chứng minh tứ giác MEFK là hình bình hành.

b) Biết MN=5 cm. Tính độ dài EF?

Bài 5: Cho tam giác ABC cân tại A. Gọi H,I lần lượt là trung điểm của BC, AC.

a) Tứ giác HIAB là hình gì ? Vì sao?

b) Gọi Q là điểm đối xứng của H qua I. Chứng minh tứ giác AHCQ là hình chữ nhật.

c) Tìm thêm điều kiện của tam giác ABC cân tại A để tứ giác AHCQ là hình vuông.

0
26 tháng 12 2022

hum

a: Xét ΔABC có M,N lần lượt là trung điểm của AB,AC
=>MN là đường trung bình của ΔABC

=>MN//BC và \(MN=\dfrac{1}{2}BC\)

=>BC=2MN

b: ta có: MN//BC

K\(\in\)MN

Do đó: MK//BC

Ta có: BC=2MN

mà MK=2MN(N là trung điểm của MK)

nên BC=MK

Xét tứ giác BMKC có 

KM//BC

KM=BC

Do đó: BMKC là hình bình hành

c: Xét tứ giác AKCM có

N là trung điểm chung của AC và KM

=>AKCM là hình bình hành

d: Để hình bình hành AKCM trở thành hình chữ nhật thì \(\widehat{AMC}=90^0\)

=>CM\(\perp\)AM tại M

=>CM\(\perp\)AB tại M

Xét ΔCAB có

CM là đường cao

CM là đường trung tuyến

Do đó: ΔCAB cân tại C

=>CA=CB