Cho DEF có đường cao DI. Gọi M là trung điểm DF. Vẽ K đối xứng với I qua M. a) Chứng minh tứ giác DIFK là hình chữ nhật. b) DEF cần thêm điều kiện gì để tứ giác DIFK là hình vuông. Em cần gấp giúp em vs plssss
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì M trung điểm DF => MD=MF
K đối xứng với M qua I => KM=MI
=> DKFI là hbh ( 2 đường chéo cắt nhau tại trung điểm mỗi đg)
Mà có ^I=90o ( DI là đường cao)
=> DKFI là hcn ( hbh có 1 góc _|_)
b) Vì DKFI là hcn=> ^D=^K=^I=^F=90 độ
=> IK_|_DF => DKFI là hình vuông (theo dấu hiệu nhận bt)
Để \(\Delta\)DEF cần thêm đk là hình vuông => DK_|_KF
=> DE=DF ( \(\Delta\)DEF trở thành \(\Delta\) cân )
Mà lại có DI là đường cao
=> \(\Delta\) DEF là \(\Delta\) vuông cân
Vậy \(\Delta\)DEF cần điều kiện DK_|_KF
a: Xét tứ giác DKFH có
I là trung điểm của DF
I là trung điểm của KH
Do đó: DKFH là hình bình hành
mà \(\widehat{DKF}=90^0\)
nên DKFH là hình chữ nhật
a: Xét ΔABC có M,N lần lượt là trung điểm của AB,AC
=>MN là đường trung bình của ΔABC
=>MN//BC và \(MN=\dfrac{1}{2}BC\)
=>BC=2MN
b: ta có: MN//BC
K\(\in\)MN
Do đó: MK//BC
Ta có: BC=2MN
mà MK=2MN(N là trung điểm của MK)
nên BC=MK
Xét tứ giác BMKC có
KM//BC
KM=BC
Do đó: BMKC là hình bình hành
c: Xét tứ giác AKCM có
N là trung điểm chung của AC và KM
=>AKCM là hình bình hành
d: Để hình bình hành AKCM trở thành hình chữ nhật thì \(\widehat{AMC}=90^0\)
=>CM\(\perp\)AM tại M
=>CM\(\perp\)AB tại M
Xét ΔCAB có
CM là đường cao
CM là đường trung tuyến
Do đó: ΔCAB cân tại C
=>CA=CB
giúp tui plssssssss