K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2021

Linh tinh thui, chắc sai.

\(x+\dfrac{1}{x}=2\) (x khác 0) 

\(\Rightarrow\dfrac{x^2+1}{x}=2\Rightarrow x^2+1=2x\Rightarrow\left(x-1\right)^2=0\Rightarrow x=1\)(TM)

Thay \(x=1\) vào bt A có \(A=\dfrac{1}{2}\)

14 tháng 1 2021

Cách khác: Ta dễ dàng nhận thấy \(x\neq 0\).

\(\dfrac{1}{A}=\dfrac{x^4+1}{x^2}=x^2+\dfrac{1}{x^2}=\left(x+\dfrac{1}{x}\right)^2-2=2^2-2=2\Rightarrow A=\dfrac{1}{2}\).

a) Vì \(x=\dfrac{1}{4}\) thỏa mãn ĐKXĐ

nên Thay \(x=\dfrac{1}{4}\) vào biểu thức \(A=\dfrac{x-4}{\sqrt{x}+2}\), ta được:

\(A=\dfrac{\dfrac{1}{4}-4}{\sqrt{\dfrac{1}{4}}+2}=\left(\dfrac{1}{4}-\dfrac{16}{4}\right):\left(\dfrac{1}{2}+2\right)=\dfrac{-15}{4}:\dfrac{5}{2}\)

\(\Leftrightarrow A=\dfrac{-15}{4}\cdot\dfrac{2}{5}=\dfrac{-30}{20}=\dfrac{-3}{2}\)

Vậy: Khi \(x=\dfrac{1}{4}\) thì \(A=\dfrac{-3}{2}\)

b) Ta có: \(B=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{\sqrt{x}-1}{2-\sqrt{x}}-\dfrac{9-x}{4-x}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{9-x}{x-4}\)

\(=\dfrac{x-2\sqrt{x}+\sqrt{x}-2+x+2\sqrt{x}-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2x-4+9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x+5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

27 tháng 1 2021

Thay x = \(\dfrac{1}{4}\)vào bt A ta có: A= \(\dfrac{\dfrac{1}{4}-4}{\sqrt{\dfrac{1}{4}}+2}=\dfrac{-15}{4}:\dfrac{5}{2}=\dfrac{-3}{2}\)

Vậy x = \(\dfrac{1}{4}\)vào bt A nhận giá trị là -3/2

b)

7 tháng 5 2022

mik cần gấp ạ^^

 

1) Cho biểu thức : A=\(\dfrac{4x^2}{x^2-4}\)+\(\dfrac{1}{x+2}\)-\(\dfrac{1}{x-2}\) (Với x≠2 và x≠ -2)a.Rút gọn biểu thức A.b. Tính giá trị của biểu thức A khi x=4.2) Rút gọn biểu thức A=\(\dfrac{x}{x-1}\)+\(\dfrac{3}{x+1}\)+\(\dfrac{3-5x}{x^2-1}\) , với x≠ -1 và x≠13) Rút gọn biểu thức P=\(\dfrac{2}{x-2}\)+\(\dfrac{1}{x+2}\)\(\dfrac{6+5x}{4-x^2}\), với x≠ -2 và x≠ 24) Cho biểu thỨC : A= \(\dfrac{2x}{x^2-25}\)+\(\dfrac{5}{5-x}\)-\(\dfrac{1}{x+5}\)( với...
Đọc tiếp

1) Cho biểu thức : A=\(\dfrac{4x^2}{x^2-4}\)+\(\dfrac{1}{x+2}\)-\(\dfrac{1}{x-2}\) (Với x≠2 và x≠ -2)

a.Rút gọn biểu thức A.

b. Tính giá trị của biểu thức A khi x=4.

2) Rút gọn biểu thức A=\(\dfrac{x}{x-1}\)+\(\dfrac{3}{x+1}\)+\(\dfrac{3-5x}{x^2-1}\) , với x≠ -1 và x≠1

3) Rút gọn biểu thức P=\(\dfrac{2}{x-2}\)+\(\dfrac{1}{x+2}\)\(\dfrac{6+5x}{4-x^2}\), với x≠ -2 và x≠ 2

4) Cho biểu thỨC : A= \(\dfrac{2x}{x^2-25}\)+\(\dfrac{5}{5-x}\)-\(\dfrac{1}{x+5}\)( với x≠5 và x≠ -5)

a. Rút gọn biểu thức A 

b. Tính giá trị của biểu thức A khi x=\(\dfrac{4}{5}\).

5) Cho biểu thức : M =\(\dfrac{x^2}{x^2+2x}\)+\(\dfrac{2}{x+2}\)+\(\dfrac{2}{x}\) ( với x ≠0 và x≠ -2)

a. Rút gọn biểu thức M 

b. Tính giá trị của biểu thức M khi: x=\(-\dfrac{3}{2}\)

MN BIẾT LÀM CÂU NÀO THÌ LÀM CÂU ĐÓ CŨNG ĐƯỢC AH!

2
NV
26 tháng 12 2022

1,

\(A=\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{4x^2+x-2-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{4x^2-4}{\left(x-2\right)\left(x+2\right)}\)

\(x=4\Rightarrow A=\dfrac{4.x^2-4}{\left(4-2\right)\left(4+2\right)}=...\)

2.

\(A=\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3-5x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x\left(x+1\right)+3\left(x-1\right)+3-5x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)

3.

Đề lỗi, thiếu dấu trước \(\dfrac{6+5x}{4-x^2}\)

NV
26 tháng 12 2022

4.

\(A=\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{2x-5\left(x+5\right)-\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4x-20}{\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{-4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4}{x-5}\)

\(x=\dfrac{4}{5}\Rightarrow A=\dfrac{-4}{\dfrac{4}{5}-5}=\dfrac{20}{21}\)

5.

\(M=\dfrac{x^2}{x\left(x+2\right)}+\dfrac{2x}{x\left(x+2\right)}+\dfrac{2\left(x+2\right)}{x\left(x+2\right)}\)

\(=\dfrac{x^2+2x+2\left(x+2\right)}{x\left(x+2\right)}=\dfrac{x^2+4x+4}{x\left(x+2\right)}\)

\(=\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x+2}{x}\)

\(x=-\dfrac{3}{2}\Rightarrow M=\dfrac{-\dfrac{3}{2}+2}{-\dfrac{3}{2}}=-\dfrac{1}{3}\)

a: Khi x=25 thì \(A=\dfrac{7\cdot5-2}{5-2}=\dfrac{33}{3}=11\)

b: P=A*B

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{2}{\sqrt{x}-1}-\dfrac{4\sqrt{x}}{x-1}\right)\cdot\dfrac{7\sqrt{x}-2}{\sqrt{x}-2}\)

\(=\dfrac{x-\sqrt{x}+2\sqrt{x}+2-4\sqrt{x}}{x-1}\cdot\dfrac{7\sqrt{x}-2}{\sqrt{x}-2}\)

\(=\dfrac{x-3\sqrt{x}+2}{x-1}\cdot\dfrac{7\sqrt{x}-2}{\sqrt{x}-2}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\cdot\left(7\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{7\sqrt{x}-2}{\sqrt{x}+1}\)

24 tháng 6 2021

`a)P=(x/(x+2)-(x^3-8)/(x^3+8)*(x^2-2x+4)/(x^2-4)):4/(x+2)`

`đk:x ne 0,x ne -2`

`P=(x/(x+2)-((x-2)(x^2+2x+4))/((x+2)(x^2-2x+4))*(x^2-2x+4)/((x-2)(x+2)))*(x+2)/4`

`=(x/(x+2)-(x^2+2x+4)/(x+2)^2)*(x+2)/4`

`=(x^2+2x-x^2-2x-4)/(x+2)^2*(x+2)/4`

`=-4/(x+2)^2*(x+2)/4`

`=-1/(x+2)`

`b)P<0`

`<=>-1/(x+2)<0`

Vì `-1<0`

`<=>x+2>0`

`<=>x> -2`

`c)P=1/x+1(x ne 0)`

`<=>-1/(x+2)=1/x+1`

`<=>1/x+1+1/(x+2)=0``

`<=>x+2+x(x+2)+x=0`

`<=>x^2+4x+2=0`

`<=>` \(\left[ \begin{array}{l}x=\sqrt2-2\\x=-\sqrt2-2\end{array} \right.\) 

`d)|2x-1|=3`

`<=>` \(\left[ \begin{array}{l}2x=4\\2x=-2\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=2(l)\\x=-1(tm)\end{array} \right.\) 

`x=-1=>P=-1/(-1+2)=-1`

`e)P=-1/(x+2)` thì nhỏ nhất cái gì nhỉ?

24 tháng 6 2021

a) đk: \(x\ne-2;2\)

 \(P=\left[\dfrac{x}{x+2}-\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}.\dfrac{x^2-2x+4}{\left(x-2\right)\left(x+2\right)}\right]:\dfrac{4}{x+2}\)

\(\left[\dfrac{x}{x+2}-\dfrac{x^2+2x+4}{\left(x+2\right)^2}\right].\dfrac{x+2}{4}\)

\(\dfrac{x^2+2x-x^2-2x-4}{\left(x+2\right)^2}.\dfrac{x+2}{4}\) = \(\dfrac{-4}{4\left(x+2\right)}=\dfrac{-1}{x+2}\)

b) Để P < 0

<=> \(\dfrac{-1}{x+2}< 0\)

<=> x +2 > 0

<=> x > -2 ( x khác 2)

c) Để P= \(\dfrac{1}{x}+1\)

<=> \(\dfrac{-1}{x+2}=\dfrac{1}{x}+1\)

<=> \(\dfrac{1}{x}+\dfrac{1}{x+2}+1=0\)

<=> \(\dfrac{x+2+x+x\left(x+2\right)}{x\left(x+2\right)}=0\)

<=> x2 + 4x + 2 = 0

<=> (x+2)2 = 2

<=> \(\left[{}\begin{matrix}x=\sqrt{2}-2\left(c\right)\\x=-\sqrt{2}-2\left(c\right)\end{matrix}\right.\)

d) Để \(\left|2x-1\right|=3\)

<=> \(\left[{}\begin{matrix}2x-1=3< =>x=2\left(l\right)\\2x-1=-3< =>x=-1\left(c\right)\end{matrix}\right.\)

Thay x = -1, ta có:

P = \(\dfrac{-1}{-1+2}=-1\)

 

Đề sai rồi bạn

ĐKXĐ: x<>-2; x<>2; x<>0

 

a: \(A=\dfrac{2x+4-4}{\left(x+2\right)^2}:\dfrac{2-x-2}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{2x}{\left(x+2\right)^2}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{-x}=\dfrac{-2\left(x-2\right)}{\left(x+2\right)}\)

A<=-2

=>A+2<=0

=>\(\dfrac{-2x+4+2x+4}{x+2}< =0\)

=>x+2<0

=>x<-2

b: Sửa đề: Tìm x để A là số nguyên

A là số nguyên

=>-2(x-2) chia hết cho x+2

=>-2x+4 chia hết cho x+2

=>-2x-4+8 chia hết cho x+2

=>\(x+2\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

=>\(x\in\left\{-1;-3;-4;-6;6;-10\right\}\)

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1; x\neq 25$

a) 

\(A=\frac{4\sqrt{x}}{\sqrt{x}-5}:\left[\frac{(\sqrt{x}-2)(\sqrt{x}+2)+\sqrt{x}-1}{(\sqrt{x}-1)(\sqrt{x}+2}+\frac{5-2\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+2)}\right]\)

\(=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{x-4+\sqrt{x}-1+5-2\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+2)}\)

\(=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{\sqrt{x}}{\sqrt{x}+2}=\frac{4\sqrt{x}}{\sqrt{x}-5}.\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{4(\sqrt{x}+2)}{\sqrt{x}-5}\)

b) Tại $x=81$ thì $\sqrt{x}=9$.

Khi đó: $A=\frac{4(9+2)}{9-5}=11$

c) $A< 4\Leftrightarrow \frac{\sqrt{x}+2}{\sqrt{x}-5}< 1$

$\Leftrightarrow \frac{7}{\sqrt{x}-5}< 0\Leftrightarrow \sqrt{x}-5< 0$

$\Leftrightarrow 0\leq x< 25$. Kết hợp với ĐKXĐ suy ra: $0\leq x< 25; x\neq 1$

1 tháng 4 2021

Hỗ trợ em nhé cô

a) Ta có: \(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{2014}\right)\left(1-\dfrac{1}{2015}\right)\left(1-\dfrac{1}{2016}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2013}{2014}\cdot\dfrac{2014}{2015}\cdot\dfrac{2015}{2016}\)

\(=\dfrac{1}{2016}\)

b) Ta có: \(\dfrac{x-2}{12}+\dfrac{x-2}{20}+\dfrac{x-2}{30}+\dfrac{x-2}{42}+\dfrac{x-2}{56}+\dfrac{x-2}{72}=\dfrac{16}{9}\)

\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\right)=\dfrac{16}{9}\)

\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\right)=\dfrac{16}{9}\)

\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{3}-\dfrac{1}{9}\right)=\dfrac{16}{9}\)

\(\Leftrightarrow\left(x-2\right)\cdot\dfrac{2}{9}=\dfrac{16}{9}\)

\(\Leftrightarrow x-2=\dfrac{16}{9}:\dfrac{2}{9}=\dfrac{16}{9}\cdot\dfrac{9}{2}=8\)

hay x=10

Vậy: x=10