K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2021

Đặt \(\left\{{}\begin{matrix}\sqrt{y+z-4}=a>0\\\sqrt{z+x-4}=b>0\\\sqrt{x+y-4}=c>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{b^2+c^2-a^2+4}{2}\\y=\dfrac{c^2+a^2-b^2+4}{2}\\z=\dfrac{a^2+b^2-c^2+4}{2}\end{matrix}\right.\).

\(2P=\dfrac{b^2+c^2-a^2+4}{a}+\dfrac{c^2+a^2-b^2+4}{b}+\dfrac{a^2+b^2-c^2+4}{c}=\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}+\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}-a-b-c\).

Áp dụng bất đẳng thức AM - GM:

\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}=\left(\dfrac{a^2}{b}+b\right)+\left(\dfrac{b^2}{c}+c\right)+\left(\dfrac{c^2}{a}+a\right)-\left(a+b+c\right)\ge2a+2b+2c-a-b-c=a+b+c\).

Tương tự, \(\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}\ge a+b+c\).

Do đó \(2P\ge a+b+c+\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}=\left(a+\dfrac{4}{a}\right)+\left(b+\dfrac{4}{b}\right)+\left(c+\dfrac{4}{c}\right)\ge4+4+4=12\Rightarrow P\ge6\).

Đẳng thức xảy ra khi a = b = c = 2 hay x = y = z = 4.

Vậy Min P = 6 khi x = y = z = 4.

NV
14 tháng 1 2021

\(P=\dfrac{4x}{2.2.\sqrt{y+z-4}}+\dfrac{4y}{2.2.\sqrt{x+z-4}}+\dfrac{4z}{2.2.\sqrt{x+y-4}}\)

\(P\ge4\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)\ge4.\dfrac{3}{2}=6\)

Dấu "=" xảy ra khi \(x=y=z=4\)

27 tháng 1 2018

bài 3:

a, đặt x12=y9=z5=kx12=y9=z5=k

=>x=12k,y=9k,z=5k

ta có: ayz=20=> 12k.9k.5k=20

=> (12.9.5)k^3=20

=>540.k^3=20

=>k^3=20/540=1/27

=>k=1/3

=>x=12.1/3=4

y=9.1/3=3

z=5.1/3=5/3

vậy x=4,y=3,z=5/3

b,ta có: x5=y7=z3=x225=y249=z29x5=y7=z3=x225=y249=z29

A/D tính chất dãy tỉ số bằng nhau ta có:

x5=y7=z3=x225=y249=z29=x2+y2z225+499=58565=9x5=y7=z3=x225=y249=z29=x2+y2−z225+49−9=58565=9

=>x=5.9=45

y=7.9=63

z=3*9=27

vậy x=45,y=63,z=27

3 tháng 2 2023

1) Áp dụng bđt Cauchy cho 3 số dương ta có

 \(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)

\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)

\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)

Cộng (1);(2);(3) theo vế ta được

\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)

\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)

\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)

 

3 tháng 2 2023

2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)

Dấu"=" khi a = 4b

nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)

Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)

Đặt \(\sqrt{a+b}=t>0\) ta được

\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)

\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)

Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)

nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)

khi đó a + b = 1

mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

 

18 tháng 5 2018

Áp dụng liên tiếp bất đẳng thức Mincopxki và bất đẳng thức Cauchy-Schwarz:

\(A=\sqrt{x^2+\dfrac{1}{x^2}}+\sqrt{y^2+\dfrac{1}{y^2}}+\sqrt{z^2+\dfrac{1}{z^2}}\)

\(A\ge\sqrt{\left(x+y+z\right)^2+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)

\(A\ge\sqrt{\left(x+y+z\right)^2+\left(\dfrac{\left(1+1+1\right)^2}{x+y+z}\right)^2}\)

\(A\ge\sqrt{4+\dfrac{81}{4}}=\sqrt{\dfrac{97}{4}}\)

Dấu "=" xảy ra khi: \(x=y=z=\dfrac{2}{3}\)

18 tháng 5 2018

\(B=\sqrt{x^2+\dfrac{1}{y^2}+\dfrac{1}{z^2}}+\sqrt{y^2+\dfrac{1}{z^2}+\dfrac{1}{x^2}}+\sqrt{z^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}}\)

\(B\ge\sqrt{\left(x+y+z\right)^2+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)

\(B=\sqrt{\left(x+y+z\right)^2+2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)

\(B\ge\sqrt{\left(x+y+z\right)^2+2\left(\dfrac{\left(1+1+1\right)^2}{x+y+z}\right)^2}\)

\(B\ge\sqrt{\left(x+y+z\right)^2+\dfrac{162}{\left(x+y+z\right)^2}}\)

\(B\ge\sqrt{4+\dfrac{162}{4}}=\sqrt{\dfrac{89}{2}}\)

Dấu "=" xảy ra khi: \(x=y=z=\dfrac{2}{3}\)

NV
23 tháng 4 2021

\(P^2=\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}+\dfrac{2xy}{\sqrt{yz}}+\dfrac{2yz}{\sqrt{zx}}+\dfrac{2zx}{\sqrt{xy}}\)

\(P^2=\left(\dfrac{x^2}{y}+\dfrac{xy}{\sqrt{yz}}+\dfrac{xy}{\sqrt{yz}}+z\right)+\left(\dfrac{y^2}{z}+\dfrac{yz}{\sqrt{zx}}+\dfrac{yz}{\sqrt{zx}}+x\right)+\left(\dfrac{z^2}{x}+\dfrac{zx}{\sqrt{xy}}+\dfrac{zx}{\sqrt{xy}}+y\right)-\left(x+y+z\right)\)

\(P^2\ge4\sqrt[4]{\dfrac{x^4y^2z}{y^2z}}+4\sqrt[4]{\dfrac{y^4z^2x}{z^2x}}+4\sqrt[4]{\dfrac{z^4x^2y}{x^2y}}-\left(x+y+z\right)=3\left(x+y+z\right)\ge36\)

\(\Rightarrow P\ge6\)

\(P_{min}=6\) khi \(x=y=z=4\)

27 tháng 10 2021

\(A^2=\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}+2\left(\dfrac{xy}{\sqrt{yz}}+\dfrac{yz}{\sqrt{xz}}+\dfrac{xz}{\sqrt{xy}}\right)\)

Áp dụng BĐT cosi:

\(\dfrac{x^2}{y}+\dfrac{xy}{\sqrt{yz}}+\dfrac{xy}{\sqrt{yz}}+z\ge4\sqrt[4]{\dfrac{x^4y^2z}{y^2z}}=4x\)

\(\dfrac{y^2}{z}+\dfrac{yz}{\sqrt{xz}}+\dfrac{yz}{\sqrt{xz}}+x\ge4\sqrt[4]{\dfrac{y^4z^2x}{z^2x}}=4y\)

\(\dfrac{z^2}{x}+\dfrac{xz}{\sqrt{xy}}+\dfrac{xz}{\sqrt{xy}}+y\ge4\sqrt[4]{\dfrac{z^4x^2y}{x^2z}}=4z\)

Cộng VTV 3 BĐT trên:

\(\Leftrightarrow A^2+\left(x+y+z\right)\ge4\left(x+y+z\right)\\ \Leftrightarrow A^2\ge3\left(x+y+z\right)\ge3\cdot12=36\\ \Leftrightarrow A\ge6\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{12}{3}=4\)

NV
13 tháng 12 2020

\(P\le\sqrt{3\left(\sum\dfrac{1}{\left(x+y\right)^2+\left(x+1\right)^2+4}\right)}\le\sqrt{3\left(\sum\dfrac{1}{4xy+4x+4}\right)}\)

\(P\le\sqrt{\dfrac{3}{4}\sum\left(\dfrac{1}{xy+x+1}\right)}=\dfrac{\sqrt{3}}{2}\)

\(P_{max}=\dfrac{\sqrt{3}}{2}\) khi \(x=y=z=1\)