Cho hình chóp S.ABCD có đáy ABCD là hình thang với AD song song BC, AD = a, BC =b . Gọi I, J lần lượt là trọng tâm của tam giác SAD, SBC. Độ dài giao tuyến của hai mặt phẳng (ADJ) và (BCI) giới hạn bởi hai mặt phẳng (SAB) và (SCD) là ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: I ∈ (SAD) ⇒ I ∈ (SAD) ∩ (IBC)
Vậy
Và PQ //AD // BC (1)
Tương tự: J ∈ (SBC) ⇒ J ∈ (SBC) ∩ (JAD)
Vậy
Từ (1) và (2) suy ra PQ // MN.
b) Ta có:
Do đó: EF = (AMND) ∩ (PBCQ)
Mà
Tính
EF: CP ∩ EF = K ⇒ EF = EK + KF
Từ (∗) suy ra
Tương tự ta tính được KF = 2a/5
Vậy:
Đáp án D
Dễ thấy rằng:
Giả sử S E ∩ A B = E ' ; S F ∩ C D = F '
Áp dụng định lý Ceva vào tam giác SAB có:
⇔ E ' A = E ' B ⇒ E ' là trung điểm của AB.
Chứng minh tương tự ta cũng có F ' là trung điểm của CD
⇒ E ' F ' là đường trung bình của hình thang ABCD
Áp dụng định lý Menelaus vào tam giác SBE’ với cát tuyến AEM có:
Chứng minh tương tự ta cũng có:
Áp dụng định lý Thales vào tam giác SE’F’ có:
a) Dễ thấy S là một điểm chung của hai mặt phẳng (SAD) và (SBC).
Ta có:
⇒ (SAD) ∩ (SBC) = Sx
Và Sx // AD // BC.
b) Ta có: MN // IA // CD
Mà
(G là trọng tâm của ∆SAB) nên
⇒ GN // SC
SC ⊂ (SCD) ⇒ GN // (SCD)
c) Giả sử IM cắt CD tại K ⇒ SK ⊂ (SCD)
MN // CD ⇒
Ta có: