Tìm GTLN-GTNN của hàm số y= \(^{x^4}\)-\(2x^2\) với x thuộc [-2;1]
help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
TXĐ: $[-1;1]$
$y'=\frac{1}{2\sqrt{x+1}}-\frac{1}{2\sqrt{1-x}}+\frac{x}{2}$
$y'=0\Leftrightarrow x=0$
$f(0)=2$;
$f(1)=f(-1)=\sqrt{2}+\frac{1}{4}$
Vậy $f_{\min}=2; f_{\max}=\frac{1}{4}+\sqrt{2}$
\(y=x^2-2x+3=x^2-2x+1+2=\left(x-1\right)^2+2\ge2\)
Vậy GTNN của hàm số là 2
\(a,\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}=\dfrac{x^2+x+1+1}{\sqrt{x^2+x+1}}=\sqrt{x^2+x+1}+\dfrac{1}{\sqrt{x^2+x+1}}\left(1\right)\)
Áp dụng BĐT cosi: \(\left(1\right)\ge2\sqrt{\sqrt{x^2+x+1}\cdot\dfrac{1}{\sqrt{x^2+x+1}}}=2\)
Dấu \("="\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
`TXĐ: R`
Ta có: `-1 <= sin(x+ \pi/3) <= 1`
`<=>0 <= sin^4 (x+\pi/3) <= 1`
`<=>2 <= y <= 3`
`=>y_[mi n]=2<=>sin(x +\pi/3)=0<=>x= -\pi/3+k\pi` `(k in ZZ)`
`y_[max]=3<=>sin(x +\pi/3)=1<=>x=\pi/6 +k2\pi` `(k in ZZ)`
\(y=\dfrac{x+3}{4}+\dfrac{9}{x-1}=\dfrac{x-1}{4}+\dfrac{9}{x-1}+1\)
\(y\ge2\sqrt{\dfrac{9\left(x-1\right)}{4\left(x-1\right)}}+1=4\)
\(y_{min}=4\) khi \(x=7\)
\(y=4\left(1-sin^2x\right)+2sinx+2=-4sin^2x+2sinx+6\)
Đặt \(sinx=t\in\left[-1;1\right]\Rightarrow y=f\left(t\right)=-4t^2+2t+6\)
\(-\dfrac{b}{2a}=\dfrac{1}{4}\in\left[-1;1\right]\)
\(f\left(-1\right)=0\) ; \(f\left(\dfrac{1}{4}\right)=\dfrac{25}{4}\); \(f\left(1\right)=4\)
\(\Rightarrow y_{max}=\dfrac{25}{4}\) khi \(sinx=\dfrac{1}{4}\)
\(y_{min}=0\) khi \(sinx=-1\)
Ta có: \(y=4cos^2x+2sinx+2=4-4sin^2x+2sinx+2=-4sin^2x+2sinx+6=-\left(4sin^2x-2sinx+\dfrac{1}{16}-\dfrac{1}{16}-6\right)=-\left(2sin^2x-\dfrac{1}{4}\right)^2+\dfrac{97}{16}\)
Ta có: \(-\left(2sin^2x-\dfrac{1}{4}\right)^2\le0\Rightarrow y\le\dfrac{97}{16}\)
Vậy \(y_{max}=\dfrac{97}{16}\)
Đạo hàm đi bạn :D Cho nhanh
\(y=f\left(x\right)=x^4-2x^2\)
\(\Rightarrow f'\left(x\right)=4x^3-4x\)
\(f'\left(x\right)=0\Leftrightarrow4x^3-4x=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=0\end{matrix}\right.\)
\(f\left(1\right)=-1;f\left(-2\right)=8;f\left(-1\right)=-1;f\left(0\right)=0\)
\(\Rightarrow y_{min}=-1;"="\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
\(y_{max}=8;"="\Leftrightarrow x=-2\)
Đặt \(x^2=t\left(0\le t\le4\right)\)
\(y=f\left(t\right)=t^2-2t\)
\(minf\left(t\right)=min\left\{f\left(0\right);f\left(4\right);f\left(1\right)\right\}=f\left(1\right)=-1\)
\(maxf\left(t\right)=max\left\{f\left(0\right);f\left(4\right);f\left(1\right)\right\}=f\left(4\right)=8\)
\(min=-1\Leftrightarrow x=\pm1\)
\(max=8\Leftrightarrow x=-2\)