K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2021

undefined

undefined

Lười đánh máy nên luyện chữ :))

28 tháng 7 2017

A B C M N 100

a) +Xét tam giác ABC cân tại A có \(\widehat{A}\)= 100o

=>\(\widehat{B}=\widehat{C}=40^o\)

TT ta có: Tam giác AMN cân(AM=AN) tại A có\(\widehat{A}\)=100o

=>\(\widehat{AMN}=\widehat{ANM}=40^o\)

=>\(\widehat{B}=\widehat{C}\)\(=\widehat{AMN}=\widehat{ANM}\)

=>\(\widehat{B}=\widehat{AMN}\)

Mà hai góc này đồng vị =>MN//BC

+Xét tam giác AMC và tam giác ANB có:

AM=AN

 chung

AC=AB

Do đó tam giác AMC= tam giác ANB(c.g.c)

Suy ra BN=CM(hai cạnh t.ứ)

Bài 2 để tí mik lm tiếp, mik đag bận, bạn tích mik để mik có cái để tl tiếp nhé

Chúc học tốt

21 tháng 12 2023

a: Xét ΔABN và ΔACM có

AB=AC

\(\widehat{BAN}\) chung

AN=AM

Do đó: ΔABN=ΔACM

b: Ta có: AM+MB=AB

AN+NC=AC

mà AM=AN và AB=AC

nên MB=NC

Xét ΔMBC và ΔNCB có

MB=NC

\(\widehat{MBC}=\widehat{NCB}\)

BC chung

Do đó: ΔMBC=ΔNCB

=>\(\widehat{BMC}=\widehat{CNB}\) và \(\widehat{MCB}=\widehat{NBC}\)

Ta có: \(\widehat{MCB}=\widehat{NBC}\)

=>\(\widehat{OCB}=\widehat{OBC}\)

=>ΔOBC cân tại O

=>OB=OC

c: Ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Ta có: FB=FC
=>F nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,O,F thẳng hàng

17 tháng 1 2018

Bài rất hay !

  A B C M E C

a) Xét tam giác ABM và tam giác ANM có

\(\widehat{BAM}\) = \(\widehat{NAM}\) (Vì AM là phân giác góc A)

AB = AN (gt)

Chung AM

=> Tam giác ABM = Tam giác ANM (c.g.c)

b) Ta có \(\widehat{ABM}\)+\(\widehat{EBE}\) = 180 độ

            \(\widehat{ANM}\) + \(\widehat{CNM}\) = 180 độ

mà \(\widehat{ABM}\)=\(\widehat{ANM}\)(Vì tam giác ABM = Tam giác ANM)

=> \(\widehat{EBE}\)\(\widehat{CNM}\)

Lại có BM = NM (Vì tam giác ABM = Tam giác ANM)

Xét tam giác BME và Tam giác NMC có

\(\widehat{EBE}\) =\(\widehat{CNM}\)

BM = NM

\(\widehat{BME}\) = \(\widehat{NMC}\) (Đối đỉnh)

=> Tam giác BME  = Tam giác NMC (c.g.c)

=> BE = NC (2 cạnh tương ứng)

c) Xét tam giác ABN

Có AB = AN (gt) => Tam giác ABN cân

=> Đường phân giác cũng là đường cao => AM vuông góc với BN (1)

Ta có BE = NC (cmt)

AB = AN

mà AE = AB+BE, AC = AN + CN

=> AE = AC

=> Tam giác AEC cân

=> đường phân giác cũng là đường cao => AM Vuông góc với EC (2)

Từ (1), (2) => BN // EC (Cùng vuông góc với AM) - đpcm

17 tháng 1 2018

Mình vẽ nhầm N thành C trên hình. bạn sửa lại dùm nhé ^^

5 tháng 8 2017

a)
* Ta thấy: Hai tam giác ABN và ABC có chung đường cao hạ từ điểm B xuống đoạn thẳng AC và có đáy AN = 1/3 AC
=> SABN = 1/3 SABC
=> SABN = 1/3 * 120 cm2
=> SABN = 40 cm2
* Theo hình vẽ, ta thấy:
SBCN = SABC - SABN
=> SBCN = 120 cm2 - 40 cm2
=> SBCN = 80 cm2
Mà hai tam giác BMN và BCN có chung chiều cao hạ từ điểm N xuống đoạn thẳng BC và có đáy BM = MC => 2 BM = MC + BM => BM = 1/2 BC
=> SBMN = 1/2 SBCN
=> SBMN = 1/2 * 80 cm2
=> SBMN = 40 cm2

5 tháng 8 2017

b) Nhìn vào hình vẽ, ta thấy:
Hai tam giác ABQ và ABN có chung đường cao hạ từ điểm A xuống đoạn thẳng BN nên: SABQ / SABN = BQ / BN
Hai tam giác BMQ và BMN có chung đường cao hạ từ điểm M xuống đoạn thẳng BN nên: SBMQ / SBMN = BQ / BN
Từ đây suy ra: SABQ / SABN = SBMQ / SBMN
Mà theo phần a), SABN = 40 cm2 , SBMN = 40 cm2 => SABN = SBMN
=> SABQ = SBMQ
Mà hai tam giác ABQ và BMQ có chung đường cao hạ từ điểm B xuống đoạn thẳng AM => AQ = QM ( đpcm )

26 tháng 8 2020

A B C M N H P Q

Xét tam giác ABN và tam giác ACM có 

\(\hept{\begin{cases}AB=AC\\AM=AN\left(\frac{1}{3}AB=\frac{1}{3}AC\right)\\\widehat{A}\text{ chung}\end{cases}}\Rightarrow\Delta ABN=\Delta ACM\left(\text{c.g.c}\right)\)

=> BN = CM (cạnh tương ứng)

=> \(\widehat{ABN}=\widehat{ACM}\)(cạnh tương ứng)

b) Vì \(\hept{\begin{cases}\widehat{ABC}=\widehat{ACB}\left(\Delta ABC\text{ cân}\right)\\\widehat{ABN}=\widehat{ACM}\left(cmt\right)\end{cases}}\Rightarrow\widehat{ABC}-\widehat{ABN}=\widehat{ACB}-\widehat{ACM}\)

=> \(\widehat{NBC}=\widehat{MCB}\text{ hay }\widehat{HBC}=\widehat{HCB}\Rightarrow\Delta HBC\text{ cân tại H }\left(ĐPCM\right)\)

=> HB = HC

c) Qua H kẻ đường thẳng PQ // BC (Q \(\in AC;P\in AB\))

Vì PQ//BC

=> \(\hept{\begin{cases}\widehat{APQ}=\widehat{ABC}\left(\text{đồng vị}\right)\\\widehat{AQP}=\widehat{ACB}\left(\text{ đồng vị}\right)\end{cases}}\text{mà }\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{APQ}=\widehat{AQP}\)

=> Tam giác APQ cân tại A

=> AP = AQ

=> PB = QC

Xét tam giác PBH và tam giác QCH có  : 

\(\hept{\begin{cases}PB=QC\left(cmt\right)\\HB=HC\left(\text{câu b}\right)\\\widehat{PBH}=\widehat{QCH}\left(\Leftrightarrow\widehat{ABN}=\widehat{ACM}\left(\text{câu a}\right)\right)\end{cases}\Rightarrow\Delta PBH}=\Delta QCH\left(c.g.c\right)\)

=> PH = QH (cạnh tương ứng)

Xét tam giác APH và tam giác AQH có : 

\(\hept{\begin{cases}AP=AQ\\PH=QH\\AH\text{ chung}\end{cases}}\Rightarrow\Delta APH=\Delta AQH\left(c.c.c\right)\) 

=> \(\widehat{AHP}=\widehat{AHQ}\left(\text{cạnh tương ứng}\right)\text{ mà }\widehat{AHP}+\widehat{AHQ}=180^{\text{o}}\Rightarrow\widehat{AHP}=\widehat{AHQ}=90^{\text{o}}\Rightarrow AH\perp PQ\)

Lại có PQ//BC

=> AH \(\perp\)BC (đpcm)