Gpt \(\left(x-2016\right)^2+\left(x-2017\right)^4=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{3}{1}.\frac{4}{2}.\frac{5}{3}...\frac{2018}{2016}.\frac{2019}{2017}\\ =\frac{3.4.5...2018.2019}{1.2.3...2016.2017}\\ =\frac{2018.2019}{2}=1009.2019\)
a.
\(x=9-\dfrac{1}{\sqrt{\dfrac{9-4\sqrt{5}}{4}}}+\dfrac{1}{\sqrt{\dfrac{9+4\sqrt{5}}{4}}}\\ x=9-\dfrac{1}{\dfrac{\sqrt{5}-2}{2}}+\dfrac{1}{\dfrac{\sqrt{5}+2}{2}}\\ x=9-\left(\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}\right)=9-8=1\\ \Rightarrow f\left(x\right)=f\left(1\right)=\left(1-1+1\right)^{2016}=1\)
c.
\(=\sin x\cdot\cos x+\dfrac{\sin^2x}{1+\dfrac{\cos x}{\sin x}}+\dfrac{\cos^2x}{1+\dfrac{\sin x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^2x}{\dfrac{\sin x+\cos x}{\sin x}}+\dfrac{\cos^2x}{\dfrac{\sin x+\cos x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^3x}{\sin x+\cos x}+\dfrac{\cos^3x}{\sin x+\cos x}\\ =\sin x\cdot\cos x+\dfrac{\left(\sin x+\cos x\right)\left(\sin^2x-\sin x\cdot\cos x+\cos^2x\right)}{\sin x+\cos x}\\ =\sin x\cdot\cos x-\sin x\cdot\cos x+\sin^2x+\cos^2x\\ =1\)
1.
ĐKXĐ: $x\geq 1; y\geq 2; z\geq 3$
PT \(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)
\(\Leftrightarrow [(x-1)-2\sqrt{x-1}+1]+[(y-2)-4\sqrt{y-2}+4]+[(z-3)-6\sqrt{z-3}+9]=0\)
\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{y-2}-2)^2+(\sqrt{z-3}-3)^2=0\)
\(\Rightarrow \sqrt{x-1}-1=\sqrt{y-2}-2=\sqrt{z-3}-3=0\)
\(\Leftrightarrow \left\{\begin{matrix} x=2\\ y=6\\ z=12\end{matrix}\right.\)
2.
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow \sqrt{x+1}=1-\sqrt{x}$
$\Rightarrow x+1=(1-\sqrt{x})^2=x+1-2\sqrt{x}$
$\Leftrightarrow 2\sqrt{x}=0$
$\Leftrightarrow x=0$
Thử lại thấy thỏa mãn
Vậy $x=0$
ĐKXĐ:x khác 0
Xét VT=\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x^2+\dfrac{1}{x^2}+2\right)=8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)=8\left(x^2+\dfrac{1}{x^2}+2\right)-8\left(x^2+\dfrac{1}{x^2}\right)=16\)
=>(x+4)2=16
<=>x+4=4 hoặc x+4=-4
<=>x=0(L) hoặc x=-8(TM)
Vậy...
Đặt x - 2017 = a
Khi đó pt trên trở thành:
(a + 1)2 + a4 = 1
\(\Leftrightarrow\) a2 + 2a + 1 + a4 = 1
\(\Leftrightarrow\) a4 + a2 + 2a = 0
\(\Leftrightarrow\) a(a3 + a + 2) = 0
\(\Leftrightarrow\) a = 0 và a3 + a + 2 = 0
+) a3 + a + 2 = 0
\(\Leftrightarrow\) a3 - a + 2a + 2 = 0
\(\Leftrightarrow\) a(a2 - 1) + 2(a + 1) = 0
\(\Leftrightarrow\) a(a + 1)(a - 1) + 2(a + 1) = 0
\(\Leftrightarrow\) (a + 1)[a(a - 1) + 2] = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}a+1=0\\a\left(a-1\right)+2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}a=-1\\a\left(a-1\right)+2=0\end{matrix}\right.\)
+) a(a - 1) + 2 = 0
\(\Leftrightarrow\) a2 - a + 2 = 0
\(\Leftrightarrow\) a2 - a + \(\dfrac{1}{4}\) + \(\dfrac{7}{4}\) = 0
\(\Leftrightarrow\) (a - \(\dfrac{1}{2}\))2 + \(\dfrac{7}{4}\) = 0 (Vô nghiệm vì (a - \(\dfrac{1}{2}\))2 + \(\dfrac{7}{4}\) > 0 với mọi a)
Vậy a = 0; a = 1
Với a = 0 \(\Rightarrow\) x - 2017 = 0 \(\Leftrightarrow\) x = 2017
Với a = -1 \(\Rightarrow\) x - 2017 = -1 \(\Leftrightarrow\) x = 2016
Vậy S = {2017; 2016}
Chúc bn học tốt!
🍀🧡_Trang_🧡🍀 :v