K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2021

vì góa A=B=C=90 độ

=>ABCD là hình chữ nhật 

mà AB=AC

=>ABCD là hình vuông=>AD vuông góc BC

29 tháng 11 2023

a) Để chứng minh tứ giác ABDC là hình chữ nhật, ta cần chứng minh AB || CD và AB = CD.

 

Vì Bx vuông góc với AB, nên AB || Bx.

Vì Cy vuông góc với AC, nên AC || Cy.

Do đó, AB || CD.

 

Ta có:

- Góc ABC = 90 độ (vì tam giác ABC vuông tại A).

- Góc BAC = 90 độ (vì Bx vuông góc với AB).

- Góc ACB = 90 độ (vì Cy vuông góc với AC).

 

Vậy tứ giác ABDC có 4 góc vuông, tức là là hình chữ nhật.

 

b) Gọi M là điểm đối xứng của B qua A và N là điểm đối xứng của C qua A. Ta cần chứng minh tứ giác BCMN là hình thoi và AD = MC.

 

Vì M là điểm đối xứng của B qua A, nên AM = MB và góc AMB = góc BMA = 90 độ.

Vì N là điểm đối xứng của C qua A, nên AN = NC và góc ANC = góc CNA = 90 độ.

 

Do đó, ta có:

- AM = MB = MC (vì M là trung điểm của BC).

- AN = NC = NB (vì N là trung điểm của BC).

- Góc BMC = góc BMA + góc AMC = 90 độ + 90 độ = 180 độ (tổng các góc trong tứ giác là 360 độ).

 

Vậy tứ giác BCMN là hình thoi và AD = MC.

 

c) Gọi E là trung điểm của AC và F là trung điểm của MN. Ta cần chứng minh EF || ND.

 

Vì E là trung điểm của AC, nên AE = EC.

Vì F là trung điểm của MN, nên AF = FN.

 

Do đó, ta có:

- AE = EC = AF = FN.

- Góc AEF = góc AFE = góc NDF = góc NFD = 90 độ (vì E và F lần lượt là trung điểm của AC và MN).

 

Vậy EF || ND.

20 tháng 12 2022

Hình Tự Vẽ nhe

a)

Tam Giác ABC có:

E là trung điểm của AB (gt)

K là trung điểm của AC(gt)

=> EK là đường trung bình của tam giác ABC

=> EK//BC ( tính chất đường trung bình của tam giác )

b)

Tứ giác ABMC có:

BM//AC ( Bx//AC; M thuộc Bx)

CM//AB ( Cy//AB; M thuộc Cy )

Góc A = 90 độ (gt)

=> tứ giác ABMC là Hình chữ nhật

=> AB//MC (tính chất hình chữ nhật )

c)

Ta có: AB // KO ( Từ K vẽ đường thẳng song song với AB cắt BC tại O )

mà AB//MC(cmt) => MC//KO

Tam Giác ABC có:

K là trung điểm của AC (gt)

KO // AB ( Từ K vẽ đường thẳng song song với AB cắt BC tại O )

=> KO là đường trung bình của tam giác ABC 

=> O là trung điểm của BC ( tính chất đường trung bình trong tam giác )

tam giác AMC có:

K là trung điểm của AC (gt)

KO//MC (cmt)

=> KO là đường trung bình của tam giác AMC => O là trung điểm của AM ( tính chất đường trung bình trong tam giác )

Vì tứ giác ABMC là Hình chữ nhật => AM Cắt BC tại trung điểm của Mỗi đường mà O là trung điểm của AM và BC => AM cắt BC tại O => A;M;O Thẳng hàng

 

 

 

 

Bài 2: 

a: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{CFE}=60^0\\\widehat{AEB}=\widehat{CEF}=60^0\end{matrix}\right.\)

=>ΔCFE đều

b: Xét tứ giác ABCD có 

\(\widehat{BAC}=\widehat{BDC}=90^0\)

Do đó: ABCD là tứ giác nội tiếp

21 tháng 9 2020

a) Ta có:

\(\widehat{A}+\widehat{ABC}+\widehat{BCA}=180\)

\(\Rightarrow\widehat{BCA}=180-90-60=30\)

Vì \(BC\perp Cy\Rightarrow\widehat{BCy}=90\)

Mà \(\widehat{BCy}+\widehat{ECF}+\widehat{BCA}=180\)

\(\Rightarrow\widehat{ECF}=180-90-30=60\left(1\right)\)

Vì \(\widehat{FBC}+\widehat{BCA}+\widehat{BFC}=180\)

\(\Rightarrow\widehat{BFC}=180-\frac{\widehat{ABC}}{2}-\widehat{BCA}\)

\(\Rightarrow\widehat{BFC}=60\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)\(\Rightarrow\Delta CEF\)là tam giác đều

21 tháng 9 2020

a) Xét ΔABC∆ABC vuông tại AA

ˆABC=60oABC^=60o

⇒ACB=30o⇒ACB=30o

Ta có: BEBE là phân giác của ˆBB^

⇒ˆCBE=12ˆABC=30o⇒CBE^=12ABC^=30o

⇒ˆFEC=ˆECB+ˆEBC=60o⇒FEC^=ECB^+EBC^=60o

Xét ΔCBF∆CBF vuông tại CC có:

ˆCBF=30oCBF^=30o

⇒ˆCFB=60o⇒CFB^=60o

Xét ΔCEF∆CEF có:

ˆFEC=ˆCFB=60oFEC^=CFB^=60o

Do đó ΔCEG∆CEG đều

b) Sửa đề: ABCDABCD là hình thang cân

Ta có:

ˆBAC=ˆBDC=90oBAC^=BDC^=90o

Do đó ABCDABCD là tứ giác nội tiếp

⇒ˆACB=ˆADB=30o⇒ACB^=ADB^=30o

Ta lại có: ˆDBC=ˆACB=30oDBC^=ACB^=30o

nên ˆABD=ˆDBCABD^=DBC^

⇒ABCD⇒ABCD là hình thang đáy AB,CDAB,CD

Mặt khác: ΔDBC∆DBC vuông tại DD có:

ˆDBC=30oDBC^=30o

⇒ˆDCB=60o=ˆABC⇒DCB^=60o=ABC^

Do đó ABCDABCD là hình thang cân