K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

a: Xét ΔEOD và ΔFOB có 

\(\widehat{EDO}=\widehat{FBO}\)

DO=BO

\(\widehat{EOD}=\widehat{FOB}\)

Do đó: ΔEDO=ΔFBO

Suy ra: ED=FB

15 tháng 12 2023

1: Xét tứ giác AEHF có

\(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)

=>AEHF là tứ giác nội tiếp

=>A,E,H,F cùng thuộc một đường tròn

2: Kẻ tiếp tuyến Ax tại A của (O)

Xét (O) có

\(\widehat{xAB}\) là góc tạo bởi tiếp tuyến Ax và dây cung AB

nên \(\widehat{xAB}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BA}\)

Xét (O) có

\(\widehat{ACB}\) là góc nội tiếp chắn cung BA

Do đó: \(\widehat{ACB}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BA}\)

=>\(\widehat{xAB}=\widehat{ACB}\left(1\right)\)

Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>\(\widehat{AEF}=\widehat{AHF}\)

mà \(\widehat{AHF}=\widehat{ACB}\left(=90^0-\widehat{HAC}\right)\)

nên \(\widehat{AEF}=\widehat{ACB}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{xAB}=\widehat{AEF}\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ax//EF

Ta có: Ax//EF

OA\(\perp\)Ax

Do đó: OA\(\perp\)EF

12 tháng 4 2023

Các bạn giúp mình ý 2 với ạ

12 tháng 4 2023

GỢI Ý

Bạn tự vẽ hình.

1) Gọi độ dài cạnh của hình vuông ABCD là a (\(AB=BC=CD=DA=a\))

△DCF∼△BEC (g-g) \(\Rightarrow\dfrac{DF}{a}=\dfrac{a}{BE}\)

BE//CD \(\Rightarrow\dfrac{a}{BE}=\dfrac{CH}{BH}\)

DF//BC \(\Rightarrow\dfrac{DF}{a}=\dfrac{DG}{CG}\)

\(\Rightarrow\dfrac{DG}{CG}=\dfrac{CH}{BH}\Rightarrow\dfrac{DG}{CH}=\dfrac{CG}{BH}=\dfrac{DG+CG}{CH+BH}=\dfrac{DC}{BC}=1\)

\(\Rightarrow DG=CH;CG=BH\)

△ADE∼△CHD \(\Rightarrow\dfrac{a}{AE}=\dfrac{CH}{a}\left(1\right)\)

△BCG∼△FAB \(\Rightarrow\dfrac{a}{AF}=\dfrac{CG}{a}\left(2\right)\)

\(\left(1\right)+\left(2\right)\Rightarrow a\left(\dfrac{1}{AE}+\dfrac{1}{AF}\right)=\dfrac{CH+CG}{a}=\dfrac{CH+BH}{a}=1\)

\(\Rightarrow\dfrac{AC}{AE}+\dfrac{AC}{AF}=\sqrt{2}\)

b) BỔ ĐỀ HÌNH THANG: Trong hình thang, đường thẳng tạo bởi giao điểm của hai đường chéo và giao điểm của hai cạnh bên thì đi qua 2 trung điểm của hai đáy.

Quay lại bài toán:

Qua O kẻ đường thẳng // với AF cắt AB, CF tại X,Y.

*Chứng minh OX=OY (dùng định lí Thales giới hạn trong các tam giác trong hình thang ABCF).

*Chứng minh K là trung điểm AF (dùng định lí Thales trong các tam giác AKE, FKE).