Cho hệ pt
\(\left\{{}\begin{matrix}3x-my=-9\\mx+2y=16\end{matrix}\right.\)
a) Chứng tỏ hệ pt luôn luôn có ngo vs mọi m
b) Định để hệ có ngo (x;y)=(1,4;6,6)
c) Tìm GT ngn của m để 2 đg thg của hệ cắt nhau tại 1 đ nằm trong góc phần IV trên xOy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x+my=9\\mx-3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9-my\\m\left(9-my\right)-3y=4\end{matrix}\right.\)(*)
(*) <=> \(9m-m^2y-3y=4\)
<=> \(-y\left(m^2+3\right)=4-9m\)
Vì \(m^2+3\ge3\) >0 với mọi m
=> m2 + 3 khác 0
=> luôn có nghiệm y = \(\dfrac{9m-4}{m^2+3}\) với mọi m
b) Khi đó x= \(9-m.\dfrac{9m-4}{m^2+3}=\dfrac{9m^2+27-9m^2+4m}{m^2+3}=\dfrac{4m^2+27}{m^2+3}\)
Để \(x-3y=\dfrac{28}{m^2+3}-3\)
=> \(4m+27-27m+12=28-3m^2+9\)
<=> \(3m^2-3m-20m+20=0\)
<=> \(3m\left(m-1\right)-20\left(m-1\right)=0\)
<=> \(\left(3m-20\right)\left(m-1\right)=0\)
<=> \(\left[{}\begin{matrix}m=\dfrac{20}{3}\\m=1\end{matrix}\right.\)
a. \(\left\{{}\begin{matrix}3x-5y=-9\\5x+2y=16\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
b.Để hpt có 1 nghiệm,
Có: \(\dfrac{3}{m}\ne\dfrac{-m}{2}\)
\(\Leftrightarrow-m^2\ne6\left(LĐ\right)\)
c.\(\left\{{}\begin{matrix}4,2-6,6m=-9\\1,4m+13,2=16\end{matrix}\right.\Leftrightarrow m=\dfrac{45}{22}\)
a. Hệ có nghiệm duy nhất \(\Rightarrow m\ne\pm2\)
\(\left\{{}\begin{matrix}mx+4y=10-m\\mx+m^2y=4m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}mx+4y=10-m\\\left(m^2-4\right)y=5m-10\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\dfrac{5}{m+2}\\x=\dfrac{-m+8}{m+2}\end{matrix}\right.\)
Để \(x>0,y>0\Rightarrow\left\{{}\begin{matrix}\dfrac{5}{m+2}>0\\\dfrac{-m+8}{m+2}>0\end{matrix}\right.\) \(\Rightarrow-2< m< 8\)
\(\Rightarrow m=\left\{-1;0;...;7\right\}\)
b. Hệ có nghiệm là các số dương khi \(-2< m< 8\)
1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)
\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)
\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)
Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)
2. Không thấy m nào ở hệ?
3. Bạn tự giải câu a
b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)
Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)
\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)
\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu
4.
\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)
- Với \(m=1\) hệ có vô số nghiệm
- Với \(m=-1\) hệ vô nghiệm
- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)
a)Dùng pp thế ta đc \(\left\{{}\begin{matrix}x=\dfrac{4+2m}{7}\\y=\dfrac{8-3m}{7}\end{matrix}\right.\)
* x<1 => \(\dfrac{4+2m}{7}< 1\) <=> \(\dfrac{4+2m}{7}-1< 0\) <=> m < 3/2
* y<1 => \(\dfrac{8-3m}{7}< 1\Leftrightarrow\dfrac{8-3m}{7}-1< 0\) <=> m >1/3
=> \(\dfrac{1}{3}< m< \dfrac{3}{2}\)
mà m nguyên
b) Xét giao điểm của 2 đường thẳng 3x+2y =4 và x+2y=3
Tọa độ giao điểm là nghiệm của hệ: \(\left\{{}\begin{matrix}3x+2y=4\\x+2y=3\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{4}\end{matrix}\right.\)
=> 2 đường thẳng cắt nhau tại A (\(\dfrac{1}{2};\dfrac{5}{4}\))
Để 3 đường thẳng đồng quy thì đường thẳng 2x-y =m đi qua A(\(\dfrac{1}{2};\dfrac{5}{4}\))
nên thay x=1/2, y = 5/4 vào pt đường thẳng 2x-y =m
Ta được m =\(-\dfrac{1}{4}\).
a, \(\left\{{}\begin{matrix}\left(m-1\right)x=m\\\left(m+1\right)y=m+2\end{matrix}\right.\)
=> Hệ luôn có nghiệm duy nhất với mọi m.
b, Với \(x=1,4;y=6,6\)
Ta có: \(\left\{{}\begin{matrix}3.1,4-6.6m=-9\\m.1,4+2.6,6=16\end{matrix}\right.\)
<=> m=2
c, Yêu cầu bài toán <=> (m-1)(m-2) > 0
<=>\(\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\)
sao bạn rút gọn đc ý a vậy. Bn lm rõ hơn đc ko