cho A=1+3+32+33+34+...+32020+32021
tìm số dư khi A:40
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+3+3^2+3^3+...+3^{2022}\)
\(=1+\left(3+3^2+3^3\right)+...+\left(3^{2020}+3^{2021}+3^{2022}\right)\)
\(=1+3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2020}\left(1+3+3^2\right)\)
\(=1+13\left(3+3^4+...+3^{2020}\right)\)
=>A chia 13 dư 1
Bạn ơi, bạn cũng xem lại giúp mình luôn nha
2020 đâu có chia hết cho 3
Với lại dãy này có 2023 số đó bạn, 2023 cũng đâu chia hết cho 3 đâu
\(M=1+3+3^2+............+3^{100}\)
\(\Leftrightarrow M=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+.......+\left(3^{98}+3^{99}+3^{100}\right)\)
\(\Leftrightarrow M=4+3^2\left(1+3+3^2\right)+3^5\left(1+3+3^2\right)+......+3^{98}\left(1+3+3^2\right)\)
\(\Leftrightarrow M=4+3^2.13+3^5.13+.........+3^{98}.13\)
\(\Leftrightarrow M=4+13\left(3^2+3^5+..........+3^{98}\right)\)
Mà \(13\left(3^2+3^5+......+3^{98}\right)⋮13\)
\(4:13\left(dư4\right)\)
\(\Leftrightarrow M:13\left(dư4\right)\)
b, tương tự
Bạn ơi mik vẫn chưa hiểu M=4+\(3^2\)+.....(mik chỉ viết ngắn gọn hoy) thì 4 bạn lấy ở đâu ra,rõ ràng đầu bài chỉ cho 1 thui mak
A = ( 1 + 3^2) + (3^4 + 3^6) + ... + (3^2016 + 3 ^2018 ) + 3 ^ 2020
= 10 + 3^4(1+3^2) + .... + 3^2016.(1+3^2) + 3^2020
= 10.(1+3^4+...+3^2016) + 3^2020
Mà : 3^n có tận cùng là : 1,3,9,7
Do đó 3 ^2020 không chia hết cho 10
Lại có 10.(1+3^4+...+3^2016) chia hết cho 10
=> A không chia hết cho 10
A=(1+32)+(34+36)+ ... + (32018+32020)
=(1+32)+ 34(1+32)+....+32018(1+32)
=(1+32) (1+34+....+32018)
=10 (1+34+....+32018) ⋮10 ( do 10 ⋮10)
Vậy A=1+32+34+36+ ... +32020 ⋮ 10 (đpcm)
\(A=3+3^2+3^3+...+3^{2020}=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2019}.\left(1+3\right)=\left(1+3\right)\left(3+3^3+...+3^{2019}\right)=4.\left(3+3^3+...+3^{2019}\right)⋮4\)
A=3 + 32 + 33 + ... + 32020 =3 (1 + 3) + 33 (1 + 3) + ... + 32019 . (1 + 3)
=(1 + 3)(3 + 33+...+32019)=4 . ( 3 + 33+ ... + 32019) ⋮ 4
a: (x-3)(y+1)=15
=>\(\left(x-3\right)\left(y+1\right)=1\cdot15=15\cdot1=\left(-1\right)\cdot\left(-15\right)=\left(-15\right)\cdot\left(-1\right)=3\cdot5=5\cdot3=\left(-3\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-3\right)\)
=>(x-3;y+1)\(\in\){(1;15);(15;1);(-1;-15);(-15;-1);(3;5);(5;3);(-3;-5);(-5;-3)}
=>(x,y)\(\in\){(4;14);(18;0);(2;-16);(-12;-2);(6;4);(8;2);(0;-6);(-2;-4)}
b: Sửa đề:\(m=1+3+3^2+3^3+...+3^{99}+3^{100}\)
\(m=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=4+3^2\left(1+3+3^2\right)+3^5\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(=4+13\left(3^2+3^5+...+3^{98}\right)\)
=>m chia 13 dư 4
\(m=1+3+3^2+...+3^{99}+3^{100}\)
\(=1+\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=1+3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{97}\left(1+3+3^2+3^3\right)\)
\(=1+40\left(3+3^5+...+3^{97}\right)\)
=>m chia 40 dư 1
A=[1+3+3^2+3^3]+...+[3^2018+3^2019+3^2020+3^2021]
A=1 nhân[1+3+3^2+3^3]+...+3^2018 nhân [1+3+3^2+3^3]
A=[1+3+3^2+3^3] NHÂN[1+...+3^2018
A=40 nhân [1+...+3^2018]
=> A chia hết cho 40