Cho tam giác ABC có cạnh thỏa mãn \(a^2+b^2=5c^2\).Tính góc giữa 2 đường trung tuyến AM và BN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi G là giao điểm của AM và BN.
Theo công thức tính độ dài đường trung tuyến: \(AM^2=\dfrac{2b^2+2c^2-a^2}{4}\);
\(BN^2=\dfrac{2c^2+2a^2-b^2}{4}\).
Từ đó \(AG^2=\dfrac{4}{9}AM^2=\dfrac{2b^2+2c^2-a^2}{9}\); \(BG^2=\dfrac{4}{9}BN^2=\dfrac{2c^2+2a^2-b^2}{9}\).
Do đó \(AG^2+BG^2=\dfrac{a^2+b^2+4c^2}{9}=\dfrac{9c^2}{9}=c^2=AB^2\).
Theo định lý Pythagoras đảo thì tam giác AGB vuông tại G.
Vậy góc giữa 2 trung tuyến AM và BN là 90o.
a)
Có 2 trung tuyến BN, CM cắt nhau suy ra \(BN\perp AM\)
Gọi G là trọng tâm tam giác ABC, ta có \(BG=\dfrac{2}{3}BN=\dfrac{2}{3}.4=\dfrac{8}{3}\left(cm\right)\)
Trong tam giác ABN vuông tại A, đường cao AG, ta có:
\(AB^2=BG.BN\) (hệ thức lượng)
\(\Rightarrow AB=\sqrt{\dfrac{8}{3}.4}=\dfrac{4\sqrt{6}}{3}\left(cm\right)\)
Tam giác ABN vuông tại A
\(\Rightarrow AN^2=BN^2-AB^2\\ \Rightarrow AN=\sqrt{4^2-\left(\dfrac{4\sqrt{6}}{3}\right)^2}=\dfrac{4\sqrt{3}}{3}\left(cm\right)\)
Mà N là trung điểm AC => AC = \(\dfrac{8\sqrt{3}}{3}\left(cm\right)\)
Áp dụng đl pytago vào tam giác ABC:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{4\sqrt{6}}{3}\right)^2+\left(\dfrac{8\sqrt{3}}{3}\right)^2}=4\sqrt{2}\left(cm\right)\)
Thừa dữ kiện AM = 3cm, bạn coi kỹ đề đủ/ đúng hết chưa thì cmt để chút mình coi lại bài giải
Ta có:
BM=MC=12BC(gt)BM=MC=12BC(gt)
⇒AC2=4AN2⇒AC2=4AN2
AN=NC=12AC(gt)AN=NC=12AC(gt)
⇒BC2=4BM2⇒BC2=4BM2
Bên cạnh đó, áp dụng tính chất trọng tâm, ta được:
AG=2GMAG=2GM
⇒AG2=4GM2⇒AG2=4GM2
BG=2GNBG=2GN
⇒BG2=4GN2⇒BG2=4GN2
Khi đó:
a2+b2a2+b2
=BC2+AC2=BC2+AC2
=4BM2+4AN2=4BM2+4AN2
=4(BG2+GM2)+4(AG2+GN2)(Pytago)=4(BG2+GM2)+4(AG2+GN2)(Pytago)
=4(BG2+AG2)+4GM2+4GN2=4(BG2+AG2)+4GM2+4GN2
=4AB2+AG2+BG2=4AB2+AG2+BG2
=4AB2+AB2=4AB2+AB2
=5AB2=5AB2
=5c2=5c2
Vậy a2+b2=5c2
Hình vẽ chỉ mang tính chất minh họa:
A B C P M N G
Gọi G là trọng tâm tam giác, P là trung điểm AB
Áp dụng công thức trung tuyến:
\(CP^2=\dfrac{2\left(a^2+b^2\right)-c^2}{4}=\dfrac{10c^2-c^2}{4}=\dfrac{9c^2}{4}\)
\(\Rightarrow CP=\dfrac{3c}{2}\Rightarrow GP=\dfrac{1}{3}CP=\dfrac{c}{2}=\dfrac{AB}{2}=AP=BP\)
\(\Rightarrow\widehat{AGB}\) là góc nội tiếp chắn nửa đường tròn đường kính AB
\(\Rightarrow AM\perp BN\)
Xin phép được chia sẻ 1 cách giải để bạn tham khảo, em cám ơn thầy Nguyễn Việt Lâm luôn nhiệt tình giúp đỡ chúng em ạ