K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 1 2021

Hình vẽ chỉ mang tính chất minh họa:

A B C P M N G

Gọi G là trọng tâm tam giác, P là trung điểm AB

Áp dụng công thức trung tuyến:

\(CP^2=\dfrac{2\left(a^2+b^2\right)-c^2}{4}=\dfrac{10c^2-c^2}{4}=\dfrac{9c^2}{4}\)

\(\Rightarrow CP=\dfrac{3c}{2}\Rightarrow GP=\dfrac{1}{3}CP=\dfrac{c}{2}=\dfrac{AB}{2}=AP=BP\)

\(\Rightarrow\widehat{AGB}\) là góc nội tiếp chắn nửa đường tròn đường kính AB

\(\Rightarrow AM\perp BN\)

21 tháng 3 2022

 Xin phép được chia sẻ 1 cách giải  để bạn tham khảo, em cám ơn thầy Nguyễn Việt Lâm luôn nhiệt tình giúp đỡ chúng em ạ
Không có mô tả ảnh.

18 tháng 1 2021

Gọi G là giao điểm của AM và BN.

Theo công thức tính độ dài đường trung tuyến: \(AM^2=\dfrac{2b^2+2c^2-a^2}{4}\);

\(BN^2=\dfrac{2c^2+2a^2-b^2}{4}\).

Từ đó \(AG^2=\dfrac{4}{9}AM^2=\dfrac{2b^2+2c^2-a^2}{9}\)\(BG^2=\dfrac{4}{9}BN^2=\dfrac{2c^2+2a^2-b^2}{9}\).

Do đó \(AG^2+BG^2=\dfrac{a^2+b^2+4c^2}{9}=\dfrac{9c^2}{9}=c^2=AB^2\).

Theo định lý Pythagoras đảo thì tam giác AGB vuông tại G.

Vậy góc giữa 2 trung tuyến AM và BN là 90o.

19 tháng 6 2023

a)

Có 2 trung tuyến BN, CM cắt nhau suy ra \(BN\perp AM\)

Gọi G là trọng tâm tam giác ABC, ta có \(BG=\dfrac{2}{3}BN=\dfrac{2}{3}.4=\dfrac{8}{3}\left(cm\right)\)

Trong tam giác ABN vuông tại A, đường cao AG, ta có:

\(AB^2=BG.BN\) (hệ thức lượng)

\(\Rightarrow AB=\sqrt{\dfrac{8}{3}.4}=\dfrac{4\sqrt{6}}{3}\left(cm\right)\)

Tam giác ABN vuông tại A

\(\Rightarrow AN^2=BN^2-AB^2\\ \Rightarrow AN=\sqrt{4^2-\left(\dfrac{4\sqrt{6}}{3}\right)^2}=\dfrac{4\sqrt{3}}{3}\left(cm\right)\)

Mà N là trung điểm AC => AC = \(\dfrac{8\sqrt{3}}{3}\left(cm\right)\)

Áp dụng đl pytago vào tam giác ABC: 

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{4\sqrt{6}}{3}\right)^2+\left(\dfrac{8\sqrt{3}}{3}\right)^2}=4\sqrt{2}\left(cm\right)\)

Thừa dữ kiện AM = 3cm, bạn coi kỹ đề đủ/ đúng hết chưa thì cmt để chút mình coi lại bài giải

Ta có:

BM=MC=12BC(gt)BM=MC=12BC(gt)

⇒AC2=4AN2⇒AC2=4AN2

AN=NC=12AC(gt)AN=NC=12AC(gt)

⇒BC2=4BM2⇒BC2=4BM2

Bên cạnh đó, áp dụng tính chất trọng tâm, ta được:

AG=2GMAG=2GM

⇒AG2=4GM2⇒AG2=4GM2

BG=2GNBG=2GN

⇒BG2=4GN2⇒BG2=4GN2

Khi đó:

a2+b2a2+b2

=BC2+AC2=BC2+AC2

=4BM2+4AN2=4BM2+4AN2

=4(BG2+GM2)+4(AG2+GN2)(Pytago)=4(BG2+GM2)+4(AG2+GN2)(Pytago)

=4(BG2+AG2)+4GM2+4GN2=4(BG2+AG2)+4GM2+4GN2

=4AB2+AG2+BG2=4AB2+AG2+BG2

=4AB2+AB2=4AB2+AB2

=5AB2=5AB2

=5c2=5c2

Vậy a2+b2=5c2