tam giác ABC đều. trên cạnh AB, BC lấy M,N sao cho BM=CN. chứng minh: AN=CM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì O cách đều 3 cạnh của tam giác nên OD = OE = OF
Áp dụng định lý Pytago vào tam giác vuông OBF và tam giác vuông ODB ta có:
BF=√OB2−OF2BF=OB2−OF2
BD=√OB2−OD2BD=OB2−OD2
Mà OF = OD nên BF = BD.
Tương tự áp dụng định lý Pytago vào tam giác vuông OEC và tam giác vuông ODC suy ra CE = CD
∆BAM có AB = BM nên ∆BAM là tam giác cân tại B ⇒ˆBAM=ˆBMA⇒BAM^=BMA^
Xét ∆BAM có BF = BD, BA = BM nên theo định lý Ta – lét ta có :
BFBA=BDBM⇒DF//AM⇒BFBA=BDBM⇒DF//AM⇒ DFAM là hình thang
Hình thang DFAM có ˆFAM=ˆAMDFAM^=AMD^ nên DFAM là hình thang cân
⇒{MF=ADAF=MD⇒{MF=ADAF=MD
∆ANC có AC = CN nên ∆ANC cân tại C⇒ˆCAN=ˆCNA⇒CAN^=CNA^
Xét ∆ANC có CE = CD, CA = CN nên theo định lý Ta – lét ta có :
CECA=CDCN⇒DE//AN⇒CECA=CDCN⇒DE//AN⇒ DEAN là hình thang
Hình thang DEAN có ˆCAN=ˆCNACAN^=CNA^ nên DEAN là hình thang cân
⇒{NE=ADAE=ND⇒{NE=ADAE=ND
⇒MF=NE⇒MF=NE
b) Xét ∆OEA và ∆ODN ta có :
⎧⎪⎨⎪⎩OE=ODˆOEA=ˆODNEA=DN{OE=ODOEA^=ODN^EA=DN⇒ΔOEA=ΔODN(c−g−c)⇒ON=OA⇒ΔOEA=ΔODN(c−g−c)⇒ON=OA
Xét ∆OAF và ∆OMD ta có :
⎧⎪⎨⎪⎩AF=MDˆOFA=ˆODMOF=OD{AF=MDOFA^=ODM^OF=OD⇒ΔOAF=ΔODM(c−g−c)⇒OA=OM⇒ΔOAF=ΔODM(c−g−c)⇒OA=OM
⇒OM=ON⇒OM=ON hay ∆MON cân tại O.
A B C M N
a, Vì AB = AC => \(\Delta ABC\)cân tại A
=> \(\widehat{ABC}=\widehat{ACB}\)
Xét \(\Delta ABM\)và \(\Delta ACN\), ta có:
AB = AC (gt)
\(\widehat{ABC}=\widehat{ACB}\)(Chứng minh trên)
BM = CN (gt)
=> \(\Delta ABM=\Delta ACN\left(c.g.c\right)\)
=> \(\widehat{BAM}=\widehat{CAN}\)
Vậy \(\widehat{BAM}=\widehat{CAN}\)
b,Vì \(\Delta ABM=\Delta ACN\)(Chứng minh trên) => AM = AN
=> \(\Delta AMN\)cân tại A
\(\Rightarrow\widehat{AMN}=\widehat{ANM}\)
Vậy \(\widehat{AMN}=\widehat{ANM}\)
M A B C N
Ta có : \(\Delta ABC\) đều => BC= AC
\(\widehat{ABC}\) = \(\widehat{ACB}\)
Xét \(\Delta CMB\) và \(\Delta ANC\) có :
BC= AC (C/M trên)
\(\widehat{ABC}\) = \(\widehat{ACB}\) (C/M trên)
MB=NC (GT)
=> \(\Delta CMB\) = \(\Delta ANC\) (c.g.c)
=> CM = AN ( 2 cạnh tương ứng)
Xét ΔBMC và ΔCNA có
BM=CN(gt)
\(\widehat{MBN}=\widehat{ACN}\left(=60^0\right)\)
BC=CA(ΔABC đều)
Do đó: ΔBMC=ΔCNA(c-g-c)
Suy ra: CM=AN(hai cạnh tương ứng)