K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2021

Ối zồi ôi ! Cái quả đề thật là zễ thương :D

5 tháng 6 2021

Dài :))

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

mà B,H,C thẳng hàng(gt)

nên H là trung điểm của BC(Đpcm)

b) Xét ΔAMB và ΔCME có 

\(\widehat{AMB}=\widehat{CME}\)(hai góc đối đỉnh)

MA=MC(M là trung điểm của AC)

\(\widehat{BAM}=\widehat{ECM}\)(hai góc so le trong, AB//CE)

Do đó: ΔAMB=ΔCME(g-c-g)

Xét ΔABC có 

BM là đường trung tuyến ứng với cạnh AC(M là trung điểm của AC)

AH là đường trung tuyến ứng với cạnh BC(H là trung điểm của BC)

BM cắt AH tại I(gt)

Do đó: I là trọng tâm của ΔABC(Tính chất ba đường trung tuyến của tam giác)

5 tháng 5 2022

ko biết

a) Xét tứ giác AEBH có

AB//HE(gt)

AE//BH(gt)

Do đó: AEBH là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: AB=HE(Hai cạnh đối trong hình bình hành AEBH)(1)

Xét tứ giác AGHC có 

AG//HC(gt)

AC//GH(gt)

Do đó: AGHC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: AC=HG(Hai cạnh đối trong hình bình hành)(2)

mà AB=AC(ΔABC cân tại A)(3)

nên từ (1), (2) và (3) suy ra HG=HE

Xét ΔHGE có HG=HE(cmt)

nên ΔHGE cân tại H(Định nghĩa tam giác cân)

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai Ia) Chứng minh tam giác ABD = tam giác ACEb) Chứng minh I là trung điểm của BCc) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCHd) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CFBài 2: Tam giác ABC vuông tại A...
Đọc tiếp

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai I

a) Chứng minh tam giác ABD = tam giác ACE

b) Chứng minh I là trung điểm của BC

c) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCH

d) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CF

Bài 2: Tam giác ABC vuông tại A có AB = 9cm, AC = 12cm. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ đường thẳng qua D vuông góc với BC, đường thẳng này cắt AC ở E và cắt AB ở K

a) Tính độ dài cạnh BC

b) Chứng minh tam giác ABE = tam giác DBE. Suy ra BE là tia phân giác góc ABC

c)  Chứng minh AC = DK

d) Kẻ đường thẳng qua A vuông góc với BC tại H. Đường thẳng này cắt BE tại M. Chứng minh tam giác AME cân

Các bạn làm hộ mình nha, mình cần gấp lắm

1

nhìu zữ giải hết chắc chết!!!

758768768978980

a: Xét ΔAHB và ΔAHC có

AB=AC

\(\widehat{BAH}=\widehat{CAH}\)

AH chung

Do đó:ΔABH=ΔACH

Ta có: ΔABC cân tại A

mà AH là đường phân giác

nên AH là đường cao

b: Xét ΔABC có 

AH là đường trung tuyến

BD là đường trung tuyến

AH cắt BD tại G

Do đó: G là trọng tâm của ΔABC

6 tháng 5 2022

undefinedkhocroi

a: Xét ΔABC và ΔCDA có 

\(\widehat{BAC}=\widehat{DCA}\) 

AC chung

\(\widehat{ACB}=\widehat{CAD}\)

Do đó: ΔABC=ΔCDA

b: Xét ΔADB và ΔCBD có

BD chung

AD=CB

AB=CD

Do đó: ΔADB=ΔCBD