K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2018

giúp mình với sắp thi rồi

22 tháng 12 2018

Tứ giác có thể là hình vuông, chữ nhật phải không bạn?

P/s: Hỏi thôi chớ không trả lời đâu :D

Xét ΔABD có AM/AB=AQ/AD

nên MQ//BD và MQ=BD/2

Xét ΔCBDcó CN/CB=CP/CD

nên NP//BD và NP=BD/2

=>MQ//PN và MQ=PN

=>MNPQ là hình bình hành

22 tháng 4 2020

 a,

góc QPN=góc QMN=80

góc PNM=góc PQM=100

Giải thích các bước giải:

 a. Gọi  E là giao của AC và BD

ABCD là hình thang cân -> AC=BD

Xét ΔDQP và  ΔCNP có

DQ=CN=(AC2AC2 = BD2BD2 )

góc QDP = góc NCP

DP=CP

-> ΔDQP =  ΔCNP (c.g.c)

-> góc DPQ=góc CPN

Xét ΔDEP và  ΔCEP có

DE=CE

cạnh EP chung

DP=CP

-> ΔDEP = ΔCEP (c.c.c)

-> góc DPE=góc CPE=90

<-> góc DPQ + góc QPE= góc CPN+góc NPE
-> góc QPE = góc NPE
-> PM là tia phân giác của góc QMN

b. Vì Q,P là trung điểm DB,DC

-> QP là đường trung bình -> QP=BC2BC2, QP//BC

CM tương tự MN=BC2BC2

PN=AD2AD2

QM=AD2AD2

Mà AD=BC

-> QP=MN=PN=QM

-> QPNM là hình thoi

Vì QP//BC -> góc DPQ=góc DCB=50

góc QPM=góc DPM-góc DPQ=90-50=40

góc QPN=2.góc QPM=2.40=80

góc PNM=180-góc QPN=100

góc QPN=góc QMN=80

góc PNM=góc PQM=100

22 tháng 4 2020

A M B Q N P D C

a.Vì M, N , P, Q là trung điểm AB, AC, DC, DB

=> MN,NP,PQ,QM là đường trung bình ΔABC,ACD,DBC,ABD

\(\Rightarrow MQ=PN=\frac{1}{2}AD,MN=PQ=\frac{1}{2}BC\)

Mà AD = BC => MN = NP = QM => MNPQ là hình thoi

=> PM là tia phân giác ^QPN

b ) Vì PN // AD => \(\widehat{NPC}=\widehat{ADC}=50^0\)

\(\Rightarrow\widehat{MPQ}=\widehat{MPN}=90^0-50^0=40^0\Rightarrow\widehat{NPQ}=80^0\)

Vì ABCD là hình thang cân , M, N là trung điểm AB ,CD

=> \(MP\perp DC,AB\)

Do MNPQ là hình thoi

\(\Rightarrow\widehat{QMN}=\widehat{QPN}=80^0\Rightarrow\widehat{MQP}=\widehat{MNP}=180^0-80^0=100^0\)