Tìm số n để phân số A = 8n+193/4n+3 sao cho:
a) Có giá trị là STN
b) Là p/s tối giản
c) Với giá trị nào của n trong khoảng từ 150 ~> 170 thì phân số A rút gọn được?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để A là số tự nhiên thì 8n+6+187 chia hết cho 4n+3
=>\(4n+3\in\left\{1;-1;11;-11;17;-17;187;-187\right\}\)
mà n>0
nên \(n\in\left\{2;46\right\}\)
c: \(A=\dfrac{8n+6+187}{4n+3}=2+\dfrac{187}{4n+3}\)
Để A rút gọn được thì ƯCLN(8n+193;4n+3)<>1
mà 150<=n<=170
nên \(n\in\left\{156;165;167\right\}\)
a) \(A=\frac{8n+193}{4n+3}=\frac{2\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)
Để \(A\inℕ\Rightarrow187⋮4n+3\Rightarrow4n+3\in\left\{17;11;187\right\}\)
+ \(4n+3=11\Leftrightarrow n=2\)
+ \(4n+3=187\Leftrightarrow n=46\)
+ \(4n+3=17\Leftrightarrow4n=14\) ( không tồn tại \(n\inℕ\))
Vậy n=2, 46
b) A tối giản khi 187 và 4n+3 có ƯCLN =1
\(\Rightarrow n\ne11k+2\left(k\inℕ\right)\)
\(n\ne17m+12\left(m\inℕ\right)\)
c) \(n=156\Rightarrow A=\frac{17}{19}\)
\(n=165\Rightarrow A=\frac{89}{39}\)
\(n=167\Rightarrow A=\frac{139}{61}\)
Ta có: . Để AN thì
Vậy n=2; n=46 thì A là số tự nhiên
b) Để A là phân số tối giản thì $ \Rightarrow 4n + 3 \ne 11k;17k. Từ đây bạn rút ra n
c) Sau khi rút ra n đc từ câu b, loại các trường hợp n ko thỏa mãn trong khoảng từ 150 đến 170, các GT còn lại thỏa mãn đề bài
a A=\(\frac{4n+3+4n+3+187}{4n+3}\)
A=2+\(\frac{187}{4n+3}\)
suy ra để A là một số nguyên và 187 phải chia hết cho 4n+3
suy ra 4n+3 thuộc ước của 187
Ư(187)= ( 11,17)
suy ra 4n=8;14
vậy n=2
a, A=\(\frac{8n+193}{4n+3}\)
A=\(\frac{4n+3+4n+3+187}{4n+3}\)
A=\(\frac{\left(4n+3\right).2}{4n+3}\)+\(\frac{187}{4n+3}\)
A= 2+\(\frac{187}{4n+3}\)
suy ra \(\frac{187}{4n+3}\)là một số nguyên và 187 phải chia hết cho 4n+3
\(\Rightarrow\)4n+3 thuộc ước của 187
Ư(187)= ( 11,17)
suy ra 4n=8;14
vậy n=2
Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)91}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)
a) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của 91 hay 3n + 4 \(\in\left\{1;7;13;91\right\}\)
Ta có bảng :
3n + 4 | 1 | 7 | 13 | 91 |
n | -1 | 1 | 3 | 29 |
nhận xét | loại | thỏa mãn | thỏa mãn | thỏa mãn |
Vậy ......
b) Để A là phân số tối giản thì \(91\text{không chia hết cho 3n + 4 hay 3n + 4 không là ước của 91}\)
=> 3n + 4 ko chia hết cho ước nguyên tố của 91
=> 3n + 4 ko chia hết cho 7 => \(n\ne7k+1\)
=> 3n + 4 ko chia hết cho 13 => \(n\ne13m+3\)