Cho tam giác ABC nhọn(AB<AC).Gọi D là trung điểm BC.Trên tia đối DA lấy E sao cho DA=DE.Kẻ BM vuông góc AD tại M,CN vuông góc DE tại N.Kẻ AH vuông góc BD tại H,EK vuông DC tại K.Đoạn AH cắt AM tại O,đoạn EK cắt CN tại I.Chứng minh O,D,I thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E đề nek
đề đây nha mn :(( cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E
Cho tam giác ABC nhọn AB<AC M là trung điểm của BC trên tia đời của tia MA có điểm E s cho AM=ME
a) cmr tam giác AMB=CMR
b từ A kẻ D s cho HA =HD cmr CE = BP
c cmr CE = CD tam giác AMD là tam giác j vì s
D CMR AM NHỎ HƠN AB +AC /2
CHỈ LM MỖI Ý D THUI NHA NHANH NHA
a: Xét ΔAMB và ΔEMC có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔAMB=ΔEMC
b: Xet ΔBAD có
BH vừa là đường cao, vừa là trung tuyến
=>ΔBAD cân tại B
=>BD=BA=CE
c: Xet ΔMAD có
MH vừa là đường cao,vừa là trung tuyến
=>ΔMAD cân tại M
d: AM<1/2(AB+AC)
=>AE<AB+AC
=>AE<BE+AB(luôn đúng)
Xét ∆MDB vuông tại M và ∆NDC vuông tại N có:
BD = DC(GT)
^ADB = ^ADC (đối đỉnh)
=> ∆MDB=∆NDC (ch-gn)
=> ^MBD = ^NCD (2 góc tương ứng)
Hay ^OBH = ^ICK
Xét ∆ADH vuông tại H và ∆EDK vuông tại K có:
AD = ED.
^ADH = ^EDK (đối đỉnh)
=>∆ADH=∆EDK (ch-gn)
=> DH = DK (2 cạnh t.ứ)
=> BD - DH = CD - DK.
=> BH = CK.
Tự cm : ∆KIC = ∆HOB (g.c.g)
=> KI = HO (2 cạnh t.ứ)
Tự cm ∆KID = ∆HOD (c.g.c)
=> ^KDI = ^HDO (2 góc t.ứ)
Mà ^KDI + ^IDB = 180°
=> ^BDO+^IDB=^IDO=180°
=> Đpcm