K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2021

x^2-6x=0

x(x-6)=0

-> x=0 hoặc x-6=0

Vậy x thuộc ( 0 và 6)

x(x-6)=0

x=6 hoặc 0

26 tháng 7 2018

bn có chắc ko viết nhầm hay sao chứ, mk bostay.com 

13 tháng 7 2016

=>6x-39= 201.3=603

=>6x= 603+ 39= 642

=>x= 642:6= 107

Vậy x= 107

13 tháng 7 2016

\(6x-39=201\cdot3\)

\(6x-39=603\)

\(6x=603+39\)

\(6x=642\)

\(\Rightarrow x=642:6\)

\(\Rightarrow x=107.\)

a: Ta có: \(2x\left(x-3\right)+x-3=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{2}\end{matrix}\right.\)

b: Ta có: \(x^2\left(x-6\right)-x^2+36=0\)

\(\Leftrightarrow\left(x-6\right)\left(x^2-x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=3\\x=-2\end{matrix}\right.\)

23 tháng 12 2021

c: \(=\left(x+1\right)^2+1>0\forall x\)

5 tháng 2 2022

Trả lời:

a, \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3

Vậy GTNN của biểu thức bằng 2 khi x = 3

b, \(-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-6x+9+2\right)=-\left[\left(x-3\right)^2+2\right]\)

\(=-\left(x-3\right)^2-2\le-2\forall x\)

Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3

Vậy GTLN của biểu thức bằng - 2 khi x = 3

c, \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\inℤ\)  (đpcm)

Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1

21 tháng 5 2016

trả lời nhìu, nhưng phải chính xác và dc giáo viên hoc24 tick 

mỗi khj dc 1 dấu tik thì sẽ có 1 GP, mà nhìu dấu tik thì có nhìu GP và nếu bn trả lời nhìu phần đó thì sẽ dc lên bảng xếp hạng ak

nhưng chỉ một môn mí dc lên ak, mk cx ko bk đúg ko nka, chỉ đoán mò z thui.

Hôm ni mk xuj v~~~~.oho

^ _ ^      V~

V~

 

21 tháng 5 2016

Trả lời thui

25 tháng 10 2021

\(a,\Leftrightarrow\left(4x-8\right)\left(x+1\right)=0\\ \Leftrightarrow4\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ b,\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2=-1\left(vô.lí\right)\end{matrix}\right.\Leftrightarrow x=-1\\ c,\Leftrightarrow x^2-2x-4x+8=0\\ \Leftrightarrow\left(x-2\right)\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\\ d,\Leftrightarrow x^3-3x^2+3x-9x+2x-6=0\\ \Leftrightarrow\left(x-3\right)\left(x^2+3x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x^2+x+2x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+1\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\\x=-2\end{matrix}\right.\)

25 tháng 10 2021

a) \(\Rightarrow4\left(x+1\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

b) \(\Rightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)\left(x^2+1\right)=0\)

\(\Rightarrow x=-1\left(do.x^2+1\ge1>0\right)\)

c) \(\Rightarrow x\left(x-4\right)-2\left(x-4\right)=0\)

\(\Rightarrow\left(x-4\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

d) \(\Rightarrow x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)

\(\Rightarrow\left(x-3\right)\left(x^2+3x+2\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x+1\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=-1\end{matrix}\right.\)

13 tháng 8 2018

Xin lỗi bạn năm nay mình ms lên lp 4 chưa biết làm

Vs lại muộn .. 

rồi off ngủ đi mai học típ =))

13 tháng 8 2018

thưa bn mk lên lớp 5 nha
gọi bằng chị đó e

a. \(8x\left(x-2007\right)-2x+4034=0\)

\(\Rightarrow\left(x-2017\right)\left(4x-1\right)\)

\(\Rightarrow\left[{}\begin{matrix}x-2017=0\\4x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2017\\4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy x=2017 hoặc x=1/4

b.\(\dfrac{x}{2}+\dfrac{x^2}{8}=0\)

\(\Rightarrow\dfrac{x}{2}\left(1+\dfrac{x}{4}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{2}=0\\1+\dfrac{x}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{x}{4}=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

Vậy x=0 hoặc x=-4

c.\(4-x=2\left(x-4\right)^2\)

\(\Rightarrow\left(4-x\right)-2\left(x-4\right)^2=0\)

\(\Rightarrow\left(4-x\right)\left(2x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4-x=0\\2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{2}\end{matrix}\right.\)

Vậy x=4 hoặc x=7/2

d.\(\left(x^2+1\right)\left(x-2\right)+2x=4\)

\(\Rightarrow\left(x-2\right)\left(x^2+3\right)=0\)

Nxet: (x2+3)>0 với mọi x

=> x-2=0 <=>x=2

Vậy x=2

 

18 tháng 7 2023

a, 8\(x\).(\(x-2007\)) - 2\(x\) + 4034 = 0

     4\(x\)(\(x\) - 2007) - \(x\) + 2017 = 0

     4\(x^2\) - 8028\(x\) - \(x\) + 2017 = 0

     4\(x^2\) - 8029\(x\) + 2017 = 0

     4(\(x^2\) - 2. \(\dfrac{8029}{8}\) \(x\) +( \(\dfrac{8029}{8}\))2) - (\(\dfrac{8029}{4}\))2  + 2017 = 0

    4.(\(x\) + \(\dfrac{8029}{8}\))2 = (\(\dfrac{8029}{4}\))2 - 2017

       \(\left[{}\begin{matrix}x=-\dfrac{8029}{8}+\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\\x=-\dfrac{8029}{8}-\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\end{matrix}\right.\) 

 

 

19 tháng 8 2018

\(2x^2+6x-8=0\)

<=> \(2x^2-2x+8x-8=0\)

<=> \(2x\left(x-1\right)+8\left(x-1\right)=0\)

<=> \(\left(2x+8\right)\left(x-1\right)=0\)

<=> \(\hept{\begin{cases}2x+8=0\\x-1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=-4\\x=1\end{cases}}\)

\(2x^2-x-1=0\)

<=> \(2x^2-2x+x-1=0\)

<=> \(2x\left(x-1\right)+\left(x-1\right)=0\)

<=> \(\left(2x+1\right)\left(x-1\right)=0\)

<=> \(\hept{\begin{cases}2x+1=0\\x-1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)

\(4x^2-5x-9=0\)

<=> \(4x^2+4x-9x-9=0\)

<=> \(4x\left(x+1\right)-9\left(x+1\right)=0\)

<=> \(\left(4x-9\right)\left(x+1\right)=0\)

<=> \(\hept{\begin{cases}4x-9=0\\x+1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{3}{2}\\x=-1\end{cases}}\)

học tốt

19 tháng 8 2018

\(2x^2+6x-8=0\)

\(< =>2x^2-2x+8x-8=0\)

\(\Leftrightarrow2x\left(x-1\right)+8\left(x-1\right)=0\)

\(\Leftrightarrow\left(2x+8\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(2x+8\right)\left(x-1\right)=0\)

\(\Leftrightarrow2x+8=0\)hoặc \(x-1=0\)

\(\Leftrightarrow x=-4\)hoặc \(x=1\)