Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bunhiacopski ta có:
\(\frac{x}{x^3+y^2+z}=\frac{x\left(\frac{1}{x}+1+z\right)}{\left(x^3+y^2+z\right)\left(\frac{1}{x}+1+z\right)}\le\frac{1+x+xz}{\left(x+y+z\right)^2}=\frac{1+x+xz}{9}\)
Tương tự rồi cộng lại ta được:
\(T\le\frac{3+x+y+z+xy+yz+zx}{9}=\frac{6+xy+yz+zx}{9}\le\frac{6+\frac{\left(x+y+z\right)^2}{3}}{9}=1\)
Dấu "=" xảy ra tại \(x=y=z=1\)
P = x(x/2+1/yz) + y(y/2+1/zx) + z(z/2+1/xy)
= ½ [x(xyz +2)/(yz) + y(xyz +2)/(xz) + z(xyz +2)/(xy)]
= ½ (xyz +2)[x/(yz) + y/(xz) + z/(xy)] ≥ ½ (xyz +2).3 /³√(xyz)
Lại có: xyz + 2 = xyz + 1 +1 ≥ 3 ³√(xyz)
Suy ra:
P = ½ (xyz +2)[x/(yz) + y/(xz) + z/(xy)] ≥ ½ (xyz +2).3 /³√(xyz)
≥ 3/2 .3 ³√(xyz)/ ³√(xyz) = 9/2
Vậy P min = 9/2
Dấu = xra khi x = y = z = 1
Bài 1:
Ta có
A =x/(x+1) +y/(y+1)+z/(z+1)
A= 1- 1/(x+1)+1-1/(y+1) +1-1/(z+1)
A=3- [1/(x+1)+1/(y+1) +1/(z+1) ]
B = 1/(x+1)+1/(y+1) +1/(z+1)
Đặt x+1=a; y+1=b;z+1 =c
=>a+b+c=4
4B=4(1/a+1/b+1/c)
B= (a+b+c) (1/a+1/b+1/c)
4B =3+(a/b+b/a) +(a/c+c/a)+(b/c+c/a)
Từ (a-b)^2 ≥ 0 =>a^2+b^2 ≥ 2ab chia 2 vế cho ab
=> a/b+b/a ≥2 dấu "=" khi a=b
Tương tự có
a/c+c/a ≥2 ;b/c+c/b ≥2
=>4B ≥3+2+2+2=9
=>B ≥ 9/4
=>A ≤ 3-9/4 = 3/4
Vậy max A =3/4 khi a=b=c
=>x=y=z =1/3
Bài 2:
Giúp tui nha
Ta có \(xyz+\left(1-x\right)\left(1-y\right)\left(1-z\right)\ge0\)
\(\Leftrightarrow1-\left(x+y+z\right)+\left(xy+yz+zx\right)\ge0\)
Mà \(x+y+z=\dfrac{3}{2}\) nên \(xy+yz+zx\ge\dfrac{1}{2}\).
\(\Rightarrow x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\le\dfrac{9}{4}-1=\dfrac{5}{4}\).
Đẳng thức xảy ra khi x = 0; y = \(\dfrac{1}{2}\); z = 1 và các hoán vị.
Vậy...