tìm n thuộc Z sao cho : \((5n^2+16n-1\over n+3\) là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đánh lại câu hỏi đi bạn
đọc ko hỉu cái quái gì hết trơn hết trọi
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
\(\frac{2n+3}{4n+1}\)= \(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1
=>n=1
mình ko chắc là đúng nha
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
Gọi d = (5n + 3 ; 3n + 2) (d thuộc N)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (vì d thuộc N)
=> ƯCLN(5n + 3 ; 3n + 2) = 1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N
ai tích cho mk với
a,Gọi d=(14n+3;21n+5)
=>14n+3 (2) và 21n+5 chia hết cho d
=>70n+15 và 63n+15 chi hết cho d => 7n chia hết cho d => 14n chia hết cho d (1)
Từ (1) và (2) => 3 chia hết cho d => d= 3 hoặc 1
+, Nếu d=3 => 21n+5 chia hết cho 3 => 5 chia hết cho 3 (vô lý) => d=1 =>đpcm
b, Gọi d=(16n+5;24n+7)
=> 16n+5 (4) và 24n+7 chia hết cho d
=>8n+2 chia hết cho d =>16n+4 chia hết cho d (3)
Từ (3) và (4) => d=1
Gọi d=ƯCLN(5n+4;4n+3)
=>20n+16-20n-15 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
Gọi \(\text{Ư}c\left(5n+4;4n+3\right)=d\)
\(=>\left\{{}\begin{matrix}5n+4⋮d\\4n+3⋮d\end{matrix}\right.=>\left\{{}\begin{matrix}20n+16⋮d\\20n+15⋮d\end{matrix}\right.\)
\(=>\left(20n+16\right)-\left(20n+15\right)⋮d\)
\(=>1⋮d\)
\(=>d\in\left\{-1;1\right\}\)
\(=>M\) là phân số tối giản