K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2015

 

Gọi d là ƯC của 3n+1 và 5n+4 => 3n+1 và 5n+4 cùng chia hết cho d

=> 5(3n+1)=15n+5 chia hết cho d và 3(5n+4)=15n+12 cũng chia hết cho d

=> (15n+12)-(15n+5)=7 cũng chia hết cho d => d thuộc {1;7}

=> d lớn nhất =7 nên ƯC của 3n+1 và 5n+4 là 7

24 tháng 1 2018

Để A rút gọn được <=> 63 và 3n + 1 phải có ước chung Có 63 = 32.7 =>3n + 1 có ước là 3 hoặc 7 Vì 3n + 1 ⋮ / ⋮̸ 3 => 3n + 1 có ước là 7 => 3n + 1 = 7k (k ∈ ∈ N) => 3n = 7k - 1 => n = 7 k − 1 3 7k−13 => n = 6 k + k − 1 3 6k+k−13 => n = 2 k + k − 1 3 2k+k−13 Để n ∈ N ⇒ k − 1 3 ∈ N ⇒ k = 3 a + 1 ( a ∈ N ) n∈N⇒k−13∈N⇒k=3a+1(a∈N) ⇒ n = 7 ( 3 a + 1 ) − 1 3 = 21 a + 7 − 1 3 = 21 a + 6 3 = 21 a 3 + 6 3 = 7 a + 2 ⇒n=7(3a+1)−13=21a+7−13=21a+63=21a3+63=7a+2 Vậy n có dạng 7a+2 thì A rút gọn được b, Để A là số tự nhiên <=> 3n + 1 ∈ ∈ Ư(63)={1;3;7;9;21;63} Ta có bảng: 3n+1 1 3 7 9 21 63 n 0 2/3 2 8/3 20/3 62/3 Vậy n ∈ ∈ {0;2}

13 tháng 12 2017

mình ko biet làm nha

15 tháng 2 2019

Gọi d = (5n + 3 ; 3n + 2) (d thuộc N) 
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d 
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 (vì d thuộc N) 
=> ƯCLN(5n + 3 ; 3n + 2) = 1 
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N

27 tháng 10 2016

ai vậy ta                                                                                                                                                                                            Tung day

25 tháng 8 2017

Gọi d là UCLN của 2n+1 và 3n+1

Ta có :

\(2n+1⋮d\)

\(3n+1⋮d\)

\(\Rightarrow3\left(2n+1\right)⋮d\)

\(\Rightarrow2\left(3n+1\right)⋮d\)

\(\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

24 tháng 8 2016

Gọi d = ƯCLN(3n + 1; 5n + 4) (d thuộc N*)

=> 3n + 1 chia hết cho d; 5n + 4 chia hết cho d

=> 5.(3n + 1) chia hết cho d; 3.(5n + 4) chia hết cho d

=> 15n + 5 chia hết cho d; 15n + 12 chia hết cho d

=> (15n + 12) - (15n + 5) chia hết cho d

=> 15n + 12 - 15n - 5 chia hết cho d

=> 7 chia hết cho d

=> d thuộc {1 ; 7}

Mà 3n + 1 và 5n + 4 là 2 số không nguyên tố cùng nhau => d khác 1

=> d = 7

=> ƯCLN(3n + 1; 5n + 4) = 7

22 tháng 10 2015

gọi ƯCLN(2n+1;6n+5 ) là d ( d là số tự nhiên ) 

Ta có : 

2n+1 chia hết cho d   ;   6n+5 chia hết cho d 

=> 3.(2n+1) chia hết cho d ; 6n+5 chia hết cho d 

=> 6n+3 chia hết cho d ; 6n+5 chia hết cho d 

=> 6n+5-(6n+3) chia hết cho d 

=> 2 chia hết cho d 

=> d=1;2

Vì 2n+1 ; 6n+5 là số lẻ không chia hết cho 2 

=> d=1

=> ƯCLN(2n+1;6n+5) la 1

=> điều phải chứng minh