tìm x thuộc Z để x+1/x-1 là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne\pm3\)
a
Khi x = 1:
\(A=\dfrac{3.1+2}{1-3}=\dfrac{5}{-2}=-2,5\)
Khi x = 2:
\(A=\dfrac{3.2+2}{2-3}=-8\)
Khi x = \(\dfrac{5}{2}:\)
\(A=\dfrac{3.2,5+2}{2,5-3}=\dfrac{9,5}{-0,5}=-19\)
b
Để A nguyên => \(\dfrac{3x+2}{x-3}\) nguyên
\(\Leftrightarrow3x+2⋮\left(x-3\right)\\3\left(x-3\right)+11⋮\left(x-3\right) \)
Vì \(3\left(x-3\right)⋮\left(x-3\right)\) nên \(11⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ \Rightarrow x\left\{4;2;-8;14\right\}\)
c
Để B nguyên => \(\dfrac{x^2+3x-7}{x+3}\) nguyên
\(\Rightarrow x\left(x+3\right)-7⋮\left(x+3\right)\)
\(\Rightarrow-7⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x=\left\{-4;-11;-2;4\right\}\)
d
\(\left\{{}\begin{matrix}A.nguyên.\Leftrightarrow x=\left\{-8;2;4;14\right\}\\B.nguyên\Leftrightarrow x=\left\{-11;-4;-2;4\right\}\end{matrix}\right.\)
=> Để A, B cùng là số nguyên thì x = 4.
\(\Leftrightarrow x^2-1\in\left\{-1;1;2\right\}\)
\(\Leftrightarrow x^2=0\)
hay x=0
\(A=\dfrac{4x-1}{x+2}=\dfrac{4\left(x+2\right)-9}{x+2}=4-\dfrac{9}{x+2}\)
Để A nguyên mà 4 nguyên
\(\Leftrightarrow x+2\inƯ\left(9\right)=\left\{1;-1;3;-3;9;-9\right\}\\ \Leftrightarrow x\in\left\{-1;-3;1;-5;7;-11\right\}\)
A=(4x+8-9)/(x+2)=2- 9/(x+2)
A€Z <=> 9 chia hết (x+2)
<=> x+2 € Ư(9)={±1,±3,±9}
<=> x€{...}
KH đk
x+5/x-1 là số nguyên=>x+5 chia hết cho x-1
=>(x-1)+6 chia hết cho x-1
=>6 chia hết cho x-1
=>x-1=-6;-3;-2;-1;1;2;3;6
=>x=-5;-2;-1;0;2;3;4;7
Để phân số trên là số nguyên
=> x+5 chia heetscho x-1
=> x-1+6 chia hết cho x-1
Vì x-1 chia hết cho x-1
=>6 chia hết cho x-1
=> x-1 thuộc Ư(6)
x-1 | x |
1 | 2 |
-1 | 0 |
2 | 3 |
-2 | -1 |
3 | 4 |
-3 | -2 |
6 | 7 |
-6 | -5 |
KL: x thuộc...........................
\(\dfrac{x^2+2x+1}{x^2-1}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}=\dfrac{x-1+2}{x-1}=1+\dfrac{2}{x-1}\)
vậy để biểu thức là số nguyên thì
`2` phải chia hết cho `x-1`
`=>x-1` thuộc tập hợp ước của 2
mà `x` thuộc `Z` nên ta có bảng sau
x-1 | 1 | -1 | 2 | -2 |
x | 2(tm) | 0(tm) | 3(tm) | -1(tm) |
vậy \(x\in\left\{2;0;3;-1\right\}\)
B=(x+1)^2/(x+1)(x-1)=(x+1)/(x-1)
Để B nguyên thì x-1+2 chia hết cho x-1
=>\(x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{2;0;3\right\}\)
\(\dfrac{x+1}{x+3}=\dfrac{x+3-2}{x+3}=1-\dfrac{2}{x+3}\)
\(Để.P\in Z\Rightarrow\dfrac{2}{x+3}\in Z\\ \Rightarrow x+3\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Rightarrow x\in\left\{-5;-4;-2;-1\right\}\)