K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2021

adass

29 tháng 10 2021

a) Áp dụng HTL ta có:\(MH.HP=MH^2\Rightarrow x=\sqrt{2.8}=4\)

\(BC=MH+HP=10\)

Áp dụng HTL ta có: \(HP.NP=MP^2\Rightarrow y=\sqrt{8.10}=4\sqrt{5}\)

b) Áp dụng HTL ta có: \(EQ.QF=DQ^2\Rightarrow x=\dfrac{4^2}{1}=16\)

\(EF=EQ+QF=17\)

Áp dụng HTL ta có: \(QP.EF=y^2\Rightarrow y=\sqrt{17.1}=\sqrt{17}\)

  

a: Xet ΔABD vuông tại B và ΔAHD vuông tại H có

AD chung

góc BAD=góc HAD

=>ΔABD=ΔAHD

b; AB=AH

DB=DH

=>AD là trung trực của BH

c: Xet ΔDBI vuông tại B và ΔDHC vuông tại H có

DB=DH

góc BDI=góc HDC

=>ΔBDI=ΔHDC

=>DI=DC

=>ΔDIC cân tại D

d: Xét ΔAIC có AB/BI=AH/HC

nên BH//IC

e: AD vuông góc BH

BH//IC

=>AD vuông góc IC

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

8 tháng 5 2023

`a)` Xét `\triangle ABC` vuông tại `A` có: `\hat{B}+\hat{C}=90^o`

      Xét `\triangle ABH` vuông tại `H` có: `\hat{B}+\hat{A_1}=90^o`

    `=>\hat{C}=\hat{A_1}`

Xét `\triangle ABC` và `\triangle HBA` có:

    `{:(\hat{C}=\hat{A_1}),(\hat{B}\text{ là góc chung}):}}=>\triangle ABC` $\backsim$ `\triangle HBA` (g-g)

`b)` Ta có: `BC=HB+HC=4+9=13(cm)`

Xét `\triangle ABC` vuông tại `A` có: `AH` là đường cao

    `@AH=\sqrt{BH.HC}=6 (cm)`

    `@AB=\sqrt{BH.BC}=2\sqrt{13}(cm)`

Ta có: `\hat{DEA}=\hat{ADH}=\hat{AEH}=90^o`

   `=>` Tứ giác `AEHD` là hcn `=>DE=AH=6(cm)`

`c)` Xét `\triangle AHB` vuông tại `H` có: `HD \bot AB=>AH^2=AD.AB`

      Xét `\triangle AHC` vuông tại `H` có: `HE \bot AC=>AH^2=AE.AC`

   `=>AD.AB=AE.AC`

loading...

8 tháng 5 2023

Cảm ơn anh nhiều yeu

14 tháng 9 2023

a) Vì \(AH\) là đường cao nên \(\widehat {AHB} = \widehat {AHC} = 90^\circ \)

Xét tam giác \(ABH\) và tam giác \(CBA\) có:

\(\widehat B\) (chung)

\(\widehat {AHB} = \widehat {CAB} = 90^\circ \) (chứng minh trên)

Suy ra, \(\Delta ABH\backsim\Delta CBA\) (g.g).

Do đó, \(\frac{{AB}}{{CB}} = \frac{{BH}}{{AB}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)

Suy ra, \(A{B^2} = BH.BC\) .

b)

-  Vì \(HE\) vuông góc với \(AB\) nên \(\widehat {HEA} = \widehat {HEB} = 90^\circ \)

Xét tam giác \(AHE\) và tam giác \(ABH\) có:

\(\widehat {HAE}\) (chung)

\(\widehat {HEA} = \widehat {AHB} = 90^\circ \) (chứng minh trên)

Suy ra, \(\Delta AHE\backsim\Delta ABH\) (g.g).

Do đó, \(\frac{{AH}}{{AB}} = \frac{{AE}}{{AH}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)

Suy ra, \(A{H^2} = AB.AE\) . (1)

- Vì \(HF\) vuông góc với \(AC\) nên \(\widehat {HFC} = \widehat {HFA} = 90^\circ \)

Xét tam giác \(AHF\) và tam giác \(ACH\) có:

\(\widehat {HAF}\) (chung)

\(\widehat {AFH} = \widehat {AHC} = 90^\circ \) (chứng minh trên)

Suy ra, \(\Delta AHF\backsim\Delta ACH\) (g.g).

Do đó, \(\frac{{AH}}{{AC}} = \frac{{AF}}{{AH}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)

Suy ra, \(A{H^2} = AF.AC\) . (2)

Từ (1) và (2) suy ra, \(AE.AB = AF.AC\) (điều phải chứng minh)

c) Vì \(AE.AB = AF.AC \Rightarrow \frac{{AE}}{{AC}} = \frac{{AF}}{{AB}}\).

Xét tam giác \(AFE\) và tam giác \(ABC\) có:

\(\widehat A\) (chung)

\(\frac{{AE}}{{AC}} = \frac{{AF}}{{AB}}\) (chứng minh trên)

Suy ra, \(\Delta AFE\backsim\Delta ABC\) (c.g.c).

d) Vì \(HF\) vuông góc với \(AC\) nên \(CF \bot HI\), do đó, \(\widehat {CFH} = \widehat {CFI} = 90^\circ \).

Vì \(IN \bot CH \Rightarrow \widehat {CBI} = \widehat {HNI} = 90^\circ \).

Xét tam giác \(HFC\) và tam giác \(HNI\) có:

\(\widehat {CHI}\) (chung)

\(\widehat {HFC} = \widehat {HNI} = 90^\circ \) (chứng minh trên)

Suy ra, \(\Delta HFC\backsim\Delta HNI\) (g.g).

Suy ra, \(\frac{{HF}}{{HN}} = \frac{{HC}}{{HI}}\) (hai cặp cạnh tương ứng cùng tỉ lệ)

Do đó, \(\frac{{HF}}{{HC}} = \frac{{HN}}{{HI}}\).

Xét tam giác \(HNF\) và tam giác \(HIC\) có:

\(\widehat {CHI}\) (chung)

\(\frac{{HF}}{{HC}} = \frac{{HN}}{{HI}}\) (chứng minh trên)

Suy ra, \(\Delta HNF\backsim\Delta HIC\) (c.g.c).

a: Xet ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>góc BED=90 độ và AD=DE

AD=DE
DE<DC
=>AD<DC

29 tháng 4 2023

bạn làm ý c giúp mình dc ko?-mình cảm ơn

16 tháng 4 2021

a/ Xét \(\Delta ABC\) và \(\Delta HAC\) có :

\(\left\{{}\begin{matrix}\widehat{C}chung\\\widehat{BAC}=\widehat{AHC}=90^0\end{matrix}\right.\)

\(\Leftrightarrow\Delta ABC\sim HAC\left(g-g\right)\)

b/ \(BC=\sqrt{AB^2+AC^2}=10cm\)

\(AH.BC=AB.AC\Leftrightarrow AH=\dfrac{AB.AC}{BC}=4,8cm\)

c/ \(\Delta HEA\sim\Delta CEH\left(g-g\right)\)

\(\Leftrightarrow\dfrac{HE}{CE}=\dfrac{EA}{HE}\Leftrightarrow HE^2=EA.EC\left(đpcm\right)\)

 

16 tháng 4 2021

a) Xét ΔHAC và ΔABC có:

∠(ACH ) là góc chung

∠(BAC)= ∠(AHC) = 90o

⇒ ΔHAC ∼ ΔABC (g.g)

b) Xét ΔHAD và ΔBAH có:

∠(DAH ) là góc chung

∠(ADH) = ∠(AHB) = 90o

⇒ ΔHAD ∼ ΔBAH (g.g)

c) Tứ giác ADHE có 3 góc vuông ⇒ ADHE là hình chữ nhật.

⇒ ΔADH= ΔAEH ( c.c.c) ⇒ ∠(DHA)= ∠(DEA)

Mặt khác: ΔHAD ∼ ΔBAH ⇒ ∠(DHA)= ∠(BAH)

∠(DEA)= ∠(BAH)

Xét ΔEAD và ΔBAC có:

∠(DEA)= ∠(BAH)

∠(DAE ) là góc chung

ΔEAD ∼ ΔBAC (g.g)

d) ΔEAD ∼ ΔBAC

ΔABC vuông tại A, theo định lí Pytago:

Theo b, ta có: