K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2021

gọi a,b,c là 3 cạnh của tam giác.

Ta có :\(cot\left(\dfrac{A}{2}\right)+cot\left(\dfrac{C}{2}\right)=2cot\left(\dfrac{B}{2}\right)\) <=> \(\dfrac{cot\left(\dfrac{A}{2}\right)}{sin\left(\dfrac{A}{2}\right)}+\dfrac{cos\left(\dfrac{C}{2}\right)}{sin\left(\dfrac{C}{2}\right)}=\dfrac{2.cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{B}{2}\right)}\)

<=> \(\dfrac{sin\left(\dfrac{C}{2}\right)cos\left(\dfrac{A}{2}\right)+cos\left(\dfrac{C}{2}\right)sin\left(\dfrac{A}{2}\right)}{sin\left(\dfrac{A}{2}\right).sin\left(\dfrac{C}{2}\right)}=2.\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{C}{2}\right)}\)

<=> \(\dfrac{sin\left(\dfrac{A}{2}+\dfrac{C}{2}\right)}{sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)}=2.\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{B}{2}\right)}\) <=> \(\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)}=2.\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{B}{2}\right)}\)

<=> \(sin\left(\dfrac{B}{2}\right).cos\left(\dfrac{B}{2}\right)=2sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)cos\left(\dfrac{B}{2}\right)\)

<=> \(\dfrac{1}{2}sinB=\left[cos\left(\dfrac{A}{2}-\dfrac{C}{2}\right)-cos\left(\dfrac{A}{2}+\dfrac{C}{2}\right)\right]cos\left(\dfrac{B}{2}\right)\)

<=>\(\dfrac{1}{2}sinB=cos\left(\dfrac{A}{2}-\dfrac{C}{2}\right).cos\left(\dfrac{B}{2}\right)-sin\left(\dfrac{B}{2}\right)cos\left(\dfrac{B}{2}\right)\)

<=> \(\dfrac{1}{2}sinB=cos\left(\dfrac{A}{2}-\dfrac{C}{2}\right)sin\left(\dfrac{A}{2}+\dfrac{C}{2}\right)-\dfrac{1}{2}sinB\)

<=> sinB = \(\dfrac{1}{2}\left(sinA+sinC\right)\) <=> \(2sinB=sinA+sinC\)

<=> \(2.\dfrac{b}{2R}=\dfrac{a}{2R}+\dfrac{c}{2R}\)

<=> a+c =2b

=> 3 cạnh của tam giác tạo thành cấp số cộng.

4 tháng 1 2021

Em cảm ơn chị

12 tháng 10 2023

Ta có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (tính chất tổng 3 góc trong 1 tam giác)

\(\Rightarrow\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{2}=90^o\)

\(\Rightarrow\dfrac{\widehat{B}+\widehat{C}}{2}=90^o-\dfrac{\widehat{A}}{2}\)

\(\Rightarrow\)\(tan\left(\dfrac{\widehat{B}+\widehat{C}}{2}\right)=tan\left(90^o-\widehat{\dfrac{A}{2}}\right)\)

\(\Rightarrow tan\left(\dfrac{\widehat{B}+\widehat{C}}{2}\right)=cot\dfrac{A}{2}\)

NV
17 tháng 4 2022

Theo tính chất của tam giác, ta có:

\(A+B+C=180^0\)

\(\Rightarrow\dfrac{A+B+C}{2}=90^0\)

\(\Rightarrow\dfrac{B+C}{2}=90^0-\dfrac{A}{2}\)

\(\Rightarrow tan\left(\dfrac{B+C}{2}\right)=tan\left(90^0-\dfrac{A}{2}\right)\)

\(\Rightarrow tan\left(\dfrac{B+C}{2}\right)=cot\left(\dfrac{A}{2}\right)\)

Bài 1: 

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có 

\(\widehat{BAD}\) chung

Do đó: ΔABD∼ΔACE(g-g)

29 tháng 3 2021

2.

ĐK: \(x\ne0\)

\(10\left(x+\dfrac{1}{x}\right)^2+5\left(x^2+\dfrac{1}{x^2}\right)^2-5\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x-5\right)^2-5\)

\(\Leftrightarrow10\left(x+\dfrac{1}{x}\right)^2+5\left(x^2+\dfrac{1}{x^2}\right)\left(x^2+\dfrac{1}{x}-x^2-\dfrac{1}{x^2}-2\right)^2=\left(x-5\right)^2-5\)

\(\Leftrightarrow10\left(x+\dfrac{1}{x}\right)^2-10\left(x^2+\dfrac{1}{x^2}\right)=\left(x-5\right)^2-5\)

\(\Leftrightarrow\left(x-5\right)^2-5=20\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=5\\x-5=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=10\left(tm\right)\\x=0\left(l\right)\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm \(x=10\)

Xét ΔABC có 

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(\Leftrightarrow2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-\alpha\)

\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{180^0-\alpha}{2}\)

Xét ΔIBC có

\(\widehat{BTC}+\widehat{IBC}+\widehat{ICB}=180^0\)

\(\Leftrightarrow\widehat{BTC}=180^0-\dfrac{180^0-\alpha}{2}=\dfrac{180^0+\alpha}{2}\)

Bổ sug đề: Cho (O), BD,CE là các dây của (O)

Sửa đề: Chứng minh góc BOE=góc EDB+góc ECB

1/2(góc EDB+góc ECB)

=1/2(1/2sđ cung EB+1/2sđ cung EB)

=1/2sđ cung EB

=1/2*góc BOE

=>góc EDB+góc ECB=góc BOE