cho x>3. Chứng minh 4x + 9 phần x-3 >=24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 . a) Thực hiện so sánh 3a và 3b, 3a+1 và 3b+1 từ đó rút ra điêu cần chứng minh
b) Thực hiện so sánh -2a và -2b, -2a - 5 và -2b -5 từ đó rút ra điêu cần chứng minh
Cậu tự trình bày nhé ? Giảng sơ sơ thế là hiểu ấy
\(x^2-y^2+4x-2y=-3\)
\(\Leftrightarrow x^2+4x+4-y^2-2y-1=0\)
=>(x+2)2-(y+1)2=0
=>x=-2 và y=-1
=>x-y=-1
Ta có: x-8>9
\(\Leftrightarrow x-17>0\)
\(\Leftrightarrow x-17+20>20\)
hay x+3>20(đpcm)
a, x(x-1)(x+1)(x+2)=24
[x(x+1)]*[(x-1)(x+2)]=24
(x^2+x)*(x^2+x-2)=24
đặt t=x^2+x;ta đc
t*(t-2)=24
t^2-2t=24
t^2-2t+1=25
(t-1)^2=5^2
(t-1)^2-5^2=0
((t-6)(t+4)=0
t=6 hoặc t= -4
với t=6
thì x^2+x=6 <=> (x+1/2)^2 = 25/4 <=> (x+1/2)^2 = (5/2)^2 <=> (x+1/2)^2 - (5/2)^2 =0
đến đây lại áp dụng HĐT thứ 3 giống như khi tìm t lúc nãy là ra
với t= -4 em tự làm
b, 2x(8x-1)^2 (4x-1)=9 <=> (8x-1)^2*(8x^2-2x)=9
<=> (64x^2-16x+1)*(8x^2-2x)=9
đặt t=(8x^2-2x) => 64x^2-16x =8t
ta đc: (8t+1)*t=9 <=> 8t^2+t-9 = 0 <=> (t-1)(8t+9)=0
c, (21/x^2-4x+10)- x^2+4x-6=0 <=> 21/x^2 - x^2 +4 =0
đảt t=x^2 (t#0)
ta đc: 21/t - t + 4 = 0
quy đồng đc: 21-t^2+4t = 0 (với t # 0)
<=> -(t-2)^2 + 25 =0 <=> 5^2 - (t-2)^2 = 0
d, 2x^4-9x^3+14x^2-9x+2=0
vế trái có tổng các hệ số (2-9+14-9+2)=0 nến có 1 nghiêm x=1
nên phân tích đc nhân tử là (x-1)
2x^4-9x^3+14x^2-9x+2=0 <=> (x-1)(2x^3-7x^2+7x-2)=0
<=> x=1 và 2x^3-7x^2+7x-2=0
PT: 2x^3-7x^2+7x-2=0 cũng có tổng các hệ số (2-7+7-2)=0 nên cũng có 1 nghiệm là 1 => vế trái có thể phân tích đc nhân tử (x-1)
2x^3-7x^2+7x-2=0 <=> (x-1)(2x^2-5x+2)=0
<=> x=1 và 2x^2-5x+2=0
2x^2-5x+2=0 <=> x^2 - (5/2)x + 1 =0
<=> (x-5/4)^2 - 9/16 = 0
<=> (x-5/4)^2 - (3/4)^2 = 0
P/s: Thay bằng a,b,c, cho dễ hiểu nha. Tham khảo nhé ♥ ♥ ♥
\(A=\left(x-2+\frac{1}{x}\right)+2y-3=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2+2y-3\ge-3\)
\(\left(1\right)\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2\ge0\) mọi x>0
\(\left(2\right)2y\ge0\) với mọi y>0
\(\left(3\right)-3\ge-3\) với x,y
(1)+(2)+(3)=> dpcm
Hiểu thì làm tiếp
Bài 1:
Ta có: (2a-2b)2 lớn hơn hặc bằng 0
<=> 4a2-8ab+4b2 lớn hơn hoặc bằng 0
<=> 5a2-a2-8ab+20b2-16b2 lớn hơn hoặc bằng 0
<=> 5a2+20b2 lớn hơn hoặc bằng a2+8ab+16b
<=> 5(a2+4b2) lớn hơn hoặc bằng (a+4b)2
<=> 5(a2+4b2) lớn hơn hoặc bằng 1 [ Thay (a+4b)2 =1]
3)
\(a=b+1\Leftrightarrow a+1>b+1\Leftrightarrow a>b+1-1\\ \Leftrightarrow a>b\)
vì p>3 nên p có dạng p=3k+1 hoặc p=3k+2
với p=3k+1 thì p^2-1=(p+1)(p-1)=(3k+2)3k chia hết cho 3
với p=3k+2 thì p^2-1=(p+1)(p-1)=(3k+3)(3k+1) chia hết cho 3
vậy với mọi số nguyên tố p>3 thì p^2-1 chia hết cho 3 (1)
mặt khác cũng vì p>3 nên p là số lẻ =>p+1,p-1 là 2 số chẵn liên tiếp
=>trong hai sô p+1,p-1 tồn tại một số là bội của 4
=>p^2-1 chia hết cho 8 (2)
từ (1) và (2) => p^2-1 chia hết cho 24 với mọi số nguyên tố p>3
Ta có x là một số nguyên tố lớn hơn 3 ( gt )
Nên x không thể chia hết cho 3 và x^2 chia 3 dư 1
\(\Rightarrow x^2-1⋮3\)
x là nguyên tố lớn hơn 3 nên x là số lẻ suy ra x^2 chia 8 dư 1
\(\Rightarrow x^2-1⋮8\)
\(\Rightarrow x^2-1⋮24\left(đpcm\right)\)